Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834814

RESUMO

Cucurbita foetidissima and C. radicans are scarcely studied wild pumpkin species that grow in arid and semi-arid areas of Mexico and the United States. This study describes the morphological, proximal composition, metabolic finger-prints and seed protein profiles of C. foetidissima and C. radicans fruits collected in the wild during a one-year period in different locations of central-western Mexico. The results obtained complement the limited information concerning the fruit composition of C. foetidissima and greatly expand information in this respect regarding C. radicans. Morphology and proximal composition of their fruits varied significantly. Different metabolic fingerprints and seed protein profiles were detected between them and also with the chemical composition of domesticated Cucurbita fruits. The neutral lipids in seed, pulp and peels were rich in wax content and in unsaturated compounds, probably carotenoids and tocopherols, in addition to tri-, di- and mono-acylglycerols. The tri- and diacylglycerol profiles of their seed oils were different from commercial seed oils and between each other. They also showed unusual fatty acid compositions. Evidence of a possible alkaloid in the pulp and peel of both species was obtained in addition to several putative cucurbitacins. An abundance of phenolic acids was found in all fruit parts, whereas flavonoids were only detected in the peels. Unlike most cucurbits, globulins were not the main protein fraction in the seeds of C. radicans, whereas the non-structural carbohydrate and raffinose oligosaccharide content in their fruit parts was lower than in other wild cucurbit species. These results emphasize the significantly different chemical composition of these two marginally studied Cucurbita species, which was more discrepant in C. radicans, despite the notion regarding C. foetidissima as an aberrant species with no affinity to any other Cucurbita species.

2.
Colloq. Agrar ; 14(3): 1-11, jul.-set. 2018. ilus, tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1481411

RESUMO

Galactinol synthase (GolS) is the enzyme that catalyzes the first step of the biosynthesis of the raffinose family oligosaccharides (RFOs), and is involved in many biological processes in plants. In the present study, four putative GolS genes were identified in the Musa acuminate genome. We further characterized these MaGolS genes in terms of protein length, molecular weight, theoretical isoelectric point and 3D protein structure. Genomic organization revealed that most MaGolS genes have four exons. The conserved motifs were identified, demonstrating high group-specificity of all MaGolS proteins. Multiple sequence alignment showed that the APSAA typical domain is present in all GolS proteins. Comparative phylogenetic analysis of the MaGolS proteins revealed three distinct groups. These data provide insight to support new studies a dressing the role of GolS genes in this important fruit species.


A galactinol sintase (GolS) é a enzima que catalisa o primeiro passo da biossíntese dos oligossacarídeos da família da rafinose (OFRs) e está envolvida em muitos processos biológicos nas plantas. No presente estudo, quatro genes GolS foram identificados no genoma de Musa acuminata. Esses genes MaGolS foram caracterizados em termos de comprimento de proteína, peso molecular, ponto isoelétrico teórico e estrutura 3D de proteína. A organização genômica revelou que a maioria dos genes MaGolS possui quatro éxons. Os motivos conservados foram identificados, demonstrando alta especificidade de grupo de todas as proteínas MaGolS. O alinhamento múltiplo das sequências mostrou que o domínio típico de APSAA está presente em todas as proteínas GolS. A análise filogenética comparativa das proteínas MaGolS revelou três grupos distintos. Estes dados fornecem insights para apoiar novos estudos sobre o papel dos genes GolS nesta importante espécie frutífera.

3.
Colloq. agrar. ; 14(3): 1-11, jul.-set. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-741725

RESUMO

Galactinol synthase (GolS) is the enzyme that catalyzes the first step of the biosynthesis of the raffinose family oligosaccharides (RFOs), and is involved in many biological processes in plants. In the present study, four putative GolS genes were identified in the Musa acuminate genome. We further characterized these MaGolS genes in terms of protein length, molecular weight, theoretical isoelectric point and 3D protein structure. Genomic organization revealed that most MaGolS genes have four exons. The conserved motifs were identified, demonstrating high group-specificity of all MaGolS proteins. Multiple sequence alignment showed that the APSAA typical domain is present in all GolS proteins. Comparative phylogenetic analysis of the MaGolS proteins revealed three distinct groups. These data provide insight to support new studies a dressing the role of GolS genes in this important fruit species.(AU)


A galactinol sintase (GolS) é a enzima que catalisa o primeiro passo da biossíntese dos oligossacarídeos da família da rafinose (OFRs) e está envolvida em muitos processos biológicos nas plantas. No presente estudo, quatro genes GolS foram identificados no genoma de Musa acuminata. Esses genes MaGolS foram caracterizados em termos de comprimento de proteína, peso molecular, ponto isoelétrico teórico e estrutura 3D de proteína. A organização genômica revelou que a maioria dos genes MaGolS possui quatro éxons. Os motivos conservados foram identificados, demonstrando alta especificidade de grupo de todas as proteínas MaGolS. O alinhamento múltiplo das sequências mostrou que o domínio típico de APSAA está presente em todas as proteínas GolS. A análise filogenética comparativa das proteínas MaGolS revelou três grupos distintos. Estes dados fornecem insights para apoiar novos estudos sobre o papel dos genes GolS nesta importante espécie frutífera.(AU)

4.
Genet Mol Biol ; 38(2): 182-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26273221

RESUMO

Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

5.
Front Plant Sci ; 5: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672534

RESUMO

Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA