Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(8): e25373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39101281

RESUMO

The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.


Assuntos
Cloretos , Ritmo Circadiano , Membro 2 da Família 12 de Carreador de Soluto , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiologia , Ratos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Masculino , Cloretos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ratos Wistar , Técnicas de Patch-Clamp , Envelhecimento/fisiologia
2.
J Neurosci Res ; 102(4): e25331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651314

RESUMO

Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.


Assuntos
Envelhecimento , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Transmissão Sináptica , Animais , Camundongos , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/metabolismo , Transmissão Sináptica/fisiologia , Envelhecimento/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Potenciais Pós-Sinápticos Excitadores/fisiologia , Vias Visuais/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo
3.
J Neurosci Res ; 102(1): e25269, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284851

RESUMO

This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.


Assuntos
Artrite , Neuralgia , Masculino , Animais , Ratos , Hiperalgesia/tratamento farmacológico , Quimiocina CX3CL1 , Neuroglia , Neuralgia/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno , Inibidores de Proteínas Quinases , Dor Facial/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno
4.
J Neurosci Res ; 99(1): 392-406, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652719

RESUMO

Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal/fisiologia , Proteínas R-SNARE/metabolismo , Serina Endopeptidases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Gânglios Espinais/metabolismo , Camundongos , Neurônios/metabolismo , Ratos Sprague-Dawley , Proteína Reelina
5.
J Comp Neurol ; 528(6): 989-1002, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31674018

RESUMO

One of the tissues of the central nervous system most affected by diabetes is the retina. Despite a growing understanding of the biochemical processes involved in glucose toxicity, little is known about the physiological consequences of chronic high glucose (HG) on individual neurons and neuronal circuits. Electroretinogram recordings suggest that retinal bipolar cells (BCs), which filter and transmit photoreceptor output to the inner retina, are among the first cells affected by diabetic conditions, and may therefore serve as sensitive early biomarkers for incipient neuronal damage caused in diabetes. Here, we comparatively assessed retinal integrity, calcium responses, and the electrophysiological profiles of specific BC types of mouse and rat organotypic retinal explants after 1 to 3 weeks in tissue culture, under moderate glucose (MG) and HG conditions. While the retinal layers of both rodent species displayed a progressively reduced thickness in culture, BCs retained their electrophysiological profiles and remained morphologically identifiable for up to 2 weeks. Responses to glutamate and endogenous inhibitory responses were routinely observed, indicating that the retinal circuitry remained intact during this period. Significant physiological differences between MG and HG conditions were evident in calcium signals and in the time course of responses to glutamate, but the voltage-gated current profiles of BCs displayed only minor variations. Overall, rat retina appeared slightly more sensitive to HG levels compared with mouse. In conclusion, electrophysiological analysis of neuronal function in rodent retinal explants is useful for the study of early damage due to HG neurotoxicity.


Assuntos
Glucose/toxicidade , Síndromes Neurotóxicas/fisiopatologia , Retina/efeitos dos fármacos , Retina/fisiopatologia , Animais , Retinopatia Diabética/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA