Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530066

RESUMO

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Receptores de Somatostatina/biossíntese , Caracteres Sexuais , Animais , Cílios/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de Somatostatina/genética
2.
J Comp Neurol ; 527(18): 2973-3001, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31152440

RESUMO

Melanin-concentrating hormone (MCH) is a conserved neuropeptide, predominantly located in the diencephalon of vertebrates, and associated with a wide range of functions. While functional studies have focused on the use of the traditional mouse laboratory model, critical gaps exist in our understanding of the morphology of the MCH system in this species. Even less is known about the nontraditional animal model Neotomodon alstoni (Mexican volcano mouse). A comparative morphological study among these rodents may, therefore, contribute to a better understanding of the evolution of the MCH peptidergic system. To this end, we employed diverse immunohistochemical protocols to identify key aspects of the MCH system, including its spatial relationship to another neurochemical population of the tuberal hypothalamus, the orexins. Three-dimensional (3D) reconstructions were also employed to convey a better sense of spatial distribution to these neurons. Our results show that the distribution of MCH neurons in all rodents studied follows a basic plan, but individual characteristics are found for each species, such as the preeminence of a periventricular group only in the rat, the lack of posterior groups in the mouse, and the extensive presence of MCH neurons in the anterior hypothalamic area of Neotomodon. Taken together, these data suggest a strong anatomical substrate for previously described functions of the MCH system, and that particular neurochemical and morphological features may have been determinant to species-specific phenotypes in rodent evolution.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Melaninas/metabolismo , Melanóforos/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Feminino , Hormônios Hipotalâmicos/análise , Hipotálamo/química , Masculino , Melaninas/análise , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Hormônios Hipofisários/análise , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
3.
J Comp Neurol ; 527(18): 3046-3072, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199515

RESUMO

The laterodorsal tegmental nucleus (LDTg) is a hindbrain cholinergic cell group thought to be involved in mechanisms of arousal and the control of midbrain dopamine cells. Nowadays, there is increasing evidence that LDTg is also engaged in mechanisms of anxiety/fear and promotion of emotional arousal under adverse conditions. Interestingly, LDTg appears to be connected with other regulators of aversive motivational states, including the lateral habenula (LHb), medial habenula (MHb), interpeduncular nucleus (IP), and median raphe nucleus (MnR). However, the circuitry between these structures has hitherto not been systematically investigated. Here, we placed injections of retrograde or anterograde tracers into LDTg, LHb, IP, and MnR. We also examined the transmitter phenotype of LDTg afferents to IP by combining retrograde tracing with immunofluorescence and in situ hybridization techniques. We found LHb inputs to LDTg mainly emerging from the medial division of the LHb (LHbM), which also receives axonal input from LDTg. The bidirectional connections between IP and LDTg displayed a lateralized organization, with LDTg inputs to IP being predominantly GABAergic or cholinergic and mainly directed to the contralateral IP. Moreover, we disclosed reciprocal LDTg connections with structures involved in the modulation of hippocampal theta rhythm including MnR, nucleus incertus, and supramammillary nucleus. Our findings indicate that the habenula is linked with LDTg either by direct reciprocal projections from/to LHbM or indirectly via the MHb-IP axis, supporting a functional role of LDTg in the regulation of aversive behaviors, and further characterizing LHb as a master controller of ascending brainstem state-setting modulatory projection systems.


Assuntos
Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , Núcleos da Rafe/fisiologia , Rombencéfalo/fisiologia , Animais , Habenula/química , Núcleo Interpeduncular/química , Masculino , Vias Neurais/química , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Núcleos da Rafe/química , Ratos , Ratos Wistar , Rombencéfalo/química
4.
J Comp Neurol ; 526(11): 1790-1805, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29633264

RESUMO

The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.


Assuntos
Biomphalaria/metabolismo , Músculos/inervação , Músculos/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Geradores de Padrão Central/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Comportamento Alimentar , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Imuno-Histoquímica , Interneurônios/fisiologia , Lymnaea , Músculos/metabolismo , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA