Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Data Brief ; 41: 108004, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35274030

RESUMO

Proximal soil sensing technologies, such as visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are dry-chemistry techniques that enable rapid and environmentally friendly soil fertility analyses. The application of XRF and LIBS sensors in an individual or combined manner for soil fertility prediction is quite recent, especially in tropical soils. The shared dataset presents spectral data of VNIR, XRF, and LIBS sensors, even as the characterization of key soil fertility attributes (clay, organic matter, cation exchange capacity, pH, base saturation, and exchangeable P, K, Ca, and Mg) of 102 soil samples. The samples were obtained from two Brazilian agricultural areas and have a wide variation of chemical and textural attributes. This is a pioneer dataset of tropical soils, with potential to be reused for comparative studies with other datasets, e.g., comparing the performance of sensors, instrumental conditions, and/or predictive models on different soil types, soil origin, concentration range, and agricultural practices. Moreover, it can also be applied to compose soil spectral libraries that use spectral data collected under similar instrumental conditions.

2.
Sci. agric ; 78(5): 1-13, 2021. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497976

RESUMO

Diffuse reflectance spectroscopy (DRS) has the potential to predict soil organic carbon (SOC). However, it is still little used as a matter of routine in soil laboratories in Brazil. The objective of this study was to make evaluations as to whether SOC predicted by spectral techniques can replace measurement by routine chemical methods with no loss in quality and be applied in the recommendation of nitrogen fertilizer as well as identifying the best prediction strategies to use. A data set containing 2,471 samples from six soil spectral libraries (SSL) was used to develop spectroscopic models for SOC content prediction, including consideration of sample stratification and preprocessing techniques. The SOC was quantified through the analytical-chemical methods of wet combustion with determination by titration, designated as the reference method (REM), and colorimeter, designated as the routine method (ROM in an independent data set). SOC contents predicted by the spectral analysis method (SAM) were compared to the REM and ROM results, converted to soil organic matter (SOM) and used for N recommendations. The best estimate for SOM content using the SAM was achieved through stratification of the SSL and application of the standard normal variate (SNV) preprocessing. The SOC predicted by spectral techniques proved capable of replacing the SOC measured by routine chemical methods with no loss of quality and supported by an appropriate nitrogen fertilizer recommendation, provided the models met the conditions and possessed the characteristics of the samples to be analyzed.


Assuntos
Análise do Solo , Carbono/análise , Nitrogênio/análise , Solo/química , Fenômenos de Química Orgânica
3.
Sci. agric. ; 78(5): 1-13, 2021. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31391

RESUMO

Diffuse reflectance spectroscopy (DRS) has the potential to predict soil organic carbon (SOC). However, it is still little used as a matter of routine in soil laboratories in Brazil. The objective of this study was to make evaluations as to whether SOC predicted by spectral techniques can replace measurement by routine chemical methods with no loss in quality and be applied in the recommendation of nitrogen fertilizer as well as identifying the best prediction strategies to use. A data set containing 2,471 samples from six soil spectral libraries (SSL) was used to develop spectroscopic models for SOC content prediction, including consideration of sample stratification and preprocessing techniques. The SOC was quantified through the analytical-chemical methods of wet combustion with determination by titration, designated as the reference method (REM), and colorimeter, designated as the routine method (ROM in an independent data set). SOC contents predicted by the spectral analysis method (SAM) were compared to the REM and ROM results, converted to soil organic matter (SOM) and used for N recommendations. The best estimate for SOM content using the SAM was achieved through stratification of the SSL and application of the standard normal variate (SNV) preprocessing. The SOC predicted by spectral techniques proved capable of replacing the SOC measured by routine chemical methods with no loss of quality and supported by an appropriate nitrogen fertilizer recommendation, provided the models met the conditions and possessed the characteristics of the samples to be analyzed.(AU)


Assuntos
Solo/química , Análise do Solo , Carbono/análise , Nitrogênio/análise , Fenômenos de Química Orgânica
4.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383627

RESUMO

Visible and near infrared (vis-NIR) diffuse reflectance and X-ray fluorescence (XRF) sensors are promising proximal soil sensing (PSS) tools for predicting soil key fertility attributes. This work aimed at assessing the performance of the individual and combined use of vis-NIR and XRF sensors to predict clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) in Brazilian tropical soils. Individual models using the data of each sensor alone were calibrated using multiple linear regressions (MLR) for the XRF data, and partial least squares (PLS) regressions for the vis-NIR data. Six data fusion approaches were evaluated and compared against individual models using relative improvement (RI). The data fusion approaches included (i) two spectra fusion approaches, which simply combined the data of both sensors in a merged dataset, followed by support vector machine (SF-SVM) and PLS (SF-PLS) regression analysis; (ii) two model averaging approaches using the Granger and Ramanathan (GR) method; and (iii) two data fusion methods based on least squares (LS) modeling. For the GR and LS approaches, two different combinations of inputs were used for MLR. The GR2 and LS2 used the prediction of individual sensors, whereas the GR3 and LS3 used the individual sensors prediction plus the SF-PLS prediction. The individual vis-NIR models showed the best results for clay and OM prediction (RPD ≥ 2.61), while the individual XRF models exhibited the best predictive models for CEC, V, ex-K, ex-Ca, and ex-Mg (RPD ≥ 2.57). For eight out of nine soil attributes studied (clay, CEC, pH, V, ex-P, ex-K, ex-Ca, and ex-Mg), the combined use of vis-NIR and XRF sensors using at least one of the six data fusion approaches improved the accuracy of the predictions (with RI ranging from 1 to 21%). In general, the LS3 model averaging approach stood out as the data fusion method with the greatest number of attributes with positive RI (six attributes; namely, clay, CEC, pH, ex-P, ex-K, and ex-Mg). Meanwhile, no single approach was capable of exploiting the synergism between sensors for all attributes of interest, suggesting that the selection of the best data fusion approach should be attribute-specific. The results presented in this work evidenced the complementarity of XRF and vis-NIR sensors to predict fertility attributes in tropical soils, and encourage further research to find a generalized method of data fusion of both sensors data.

5.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757037

RESUMO

Portable X-ray fluorescence (pXRF) sensors allow one to collect digital data in a practical and environmentally friendly way, as a complementary method to traditional laboratory analyses. This work aimed to assess the performance of a pXRF sensor to predict exchangeable nutrients in soil samples by using two contrasting strategies of sample preparation: pressed pellets and loose powder (<2 mm). Pellets were prepared using soil and a cellulose binder at 10% w w-1 followed by grinding for 20 min. Sample homogeneity was probed by X-ray fluorescence microanalysis. Exchangeable nutrients were assessed by pXRF furnished with a Rh X-ray tube and silicon drift detector. The calibration models were obtained using 58 soil samples and leave-one-out cross-validation. The predictive capabilities of the models were appropriate for both exchangeable K (ex-K) and Ca (ex-Ca) determinations with R2 ≥ 0.76 and RPIQ > 2.5. Although XRF analysis of pressed pellets allowed a slight gain in performance over loose powder samples for the prediction of ex-K and ex-Ca, satisfactory performances were also obtained with loose powders, which require minimal sample preparation. The prediction models with local samples showed promising results and encourage more detailed investigations for the application of pXRF in tropical soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA