Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biol Interact ; 384: 110685, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666443

RESUMO

Osteosarcoma (OS) is a frequent bone cancer, affecting largely children and young adults. Cisplatin (CDDP) has been efficacious in the treatment of different cancer such us OS but the development of chemoresistance and important side effects leading to therapeutic failure. Novel therapies including copper compounds have shown to be potentially effective as anticancer drugs and one alternative to usually employed platinum compounds. The goal of this work is the evaluation of the in vitro and in vivo antitumoral activity and dilucidate the molecular target of a Cu(II) cationic complex containing a tridentate hydrazone ligand, CuHL for short, H2L=N'-'-(2-hydroxy-3-methoxybenzylidene)thiophene-2-carbohydrazide, against human OS MG-63 cells. Anticancer activity on MG-63 cell line was evaluated in OS monolayer and spheroids. CuHL significantly impaired cell viability in both models (IC50 2D: 2.1 ± 0.3 µM; 3D: 9.1 ± 1.0 µM) (p < 0.001). Additional cell studies demonstrated the copper compound inhibits cell proliferation and conveys cells to apoptosis, determined by flow cytometry. CuHL showed a great genotoxicity, evaluated by comet assay. Proteomic analysis by Orbitrap Mass Spectometry identified 27 differentially expressed proteins: 17 proteins were found overexpressed and 10 underexpressed in MG-63 cells after the CuHL treatment. The response to unfolded protein was the most affected biological process. In addition, in vivo antitumor effects of the compound were evaluated on human OS tumors xenografted in nude mice. CuHL treatment, at a dose of 2 mg/kg i.p., given three times/week for one month, significantly inhibited the progression of OS xenografts and was associated to a reduction in mitotic index and to an increment of tumor necrosis (p < 0.01). Administration of standard-of-care cytotoxic agent CDDP, following the same treatment schedule as CuHL, failed to impair OS growth and progression.

2.
Chemosphere ; 336: 139284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348613

RESUMO

Selenastrum capricornutum efficiently degrades benzo(a)pyrene (BaP) but few proteins related to BaP degradation have been identified in this microalgae. So far, it has only been suggested that it could degrade BaP via the monooxygenase and/or dioxygenase pathways. To know more about this fact, in this work, cultures of S. capricornutum incubated with BaP were used to obtain the molecular weights (MWs) of proteins existing in its extra- and cellular extracts by electrophoresis and UPLC-ESI(+)-TOF MS analysis. The results of this proteomic approach indicated that BaP markedly induces the MWs: 6-20, 30, 45, and 65 kDa in cells; 6-20, 30.3, 38-45, and 55 kDa in liquid medium. So, these proteins could be related to BaP biodegradation. An identified protein with monooxygenase activity and rubredoxins (Rds) show to be related to BaP degradation: Rds could participate, together with the monooxygenase in the electron transfer during the formation of monohydroxylated-BaP metabolites. Rds may be also associated with a dioxygenase system that degrades BaP to form dihydrodiol-BaP metabolites. A multi-pass membrane protein was identified too, and it can regulate the transport of molecules like enzymes from inside the cell to the outside environment. At the same time, the presence of a dihydrolipoamide acetyltransferase validated the stress caused by the exposure to BaP. It is noteworthy that these findings provide valuable and original information on the characterization of the proteins of S. capricornutum cultures degrading BaP, whose enzymes have so far not been known. It is important to highlight that the functions of the identified proteins can help in understanding the metabolic and environmental behavior of this microalgae, and the extracts containing the degrading enzymes could be utilized in bioremediation applications.


Assuntos
Clorofíceas , Clorófitas , Dioxigenases , Clorófitas/metabolismo , Benzo(a)pireno/metabolismo , Proteômica , Clorofíceas/metabolismo , Oxigenases de Função Mista/metabolismo , Dioxigenases/metabolismo , Espectrometria de Massas
3.
Sci Total Environ ; 797: 149035, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303250

RESUMO

High molecular weight PAHs (HMW PAHs) are dangerous pollutants widely distributed in the environment. The use of microorganisms represents an important tool for HMW PAHs bioremediation, so, the understanding of their biochemical pathways facilitates the development of biodegradation strategies. For this reason, the potential role of species of microalgae, bacteria, and microalga-bacteria consortia in the degradation of HMW PAHs is discussed. The identification of their metabolites, mostly by GC-MS and LC-MS, allows a better approach to the enzymes involved in the key steps of the metabolic pathways of HMW PAHs biodegradation. So, this review intends to address the proteomic research on enzyme activities and their involvement in regulating essential biochemical functions that help bacteria and microalgae in the biodegradation processes of HMW PAHs. It is noteworthy that, given that to the best of our knowledge, this is the first review focused on the mass spectrometry identification of the HMW PAHs metabolites; whereby and due to the great concern of the presence of HMW PAHs in the environment, this material could help the urgency of developing new bioremediation methods. The elucidation of the metabolic pathways of persistent pollutant degrading microorganisms should lead to a better knowledge of the enzymes involved, which could contribute to a very ecological route to the control of environmental contamination in the future.


Assuntos
Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Biodegradação Ambiental , Espectrometria de Massas , Peso Molecular , Proteômica
4.
Colloids Surf B Biointerfaces ; 166: 330-338, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29609156

RESUMO

Considering that the use of nanoparticles (NPs) as carriers of therapeutic or theranostic agents has increased in the last years, it is mandatory to understand the interaction between NPs and living systems. In contact with biological fluids, the NPs (synthetic identity) are covered with biomolecules that form a protein corona, which defines the biological identity. It is well known that the protein corona formation is mediated by non-specific physical interactions, but protein-protein interactions (PPI), involving specific recognition sites of the polypeptides, are also involved. This work explores the relationship between the synthetic and biological identities of layered double hydroxides nanoparticles (LDH-NPs) and the effect of the protein corona on the cellular response. With such a purpose, the synthetic identity was modified by coating LDH-NPs with either a single protein or a complex mixture of them, followed by the characterization of the protein corona formed in a commonly used cell culture medium. A proteomic approach was used to identify the protein corona molecules and the PPI network was constructed with a novel bioinformatic tool. The coating on LDH-NPs defines the biological identity in such a way that the composition of the protein corona as well as PPI are changed. Electrostatic interactions appear not to be the only driving force regulating the interactions between NPs, proteins and cells since the specific recognition also play a fundamental role. However, the biological identity of LDH-NPs does not affect the interactions with cells that shows negligible cytotoxicity and high internalization levels.


Assuntos
Nanopartículas/química , Proteínas/química , Biologia Computacional , Proteômica/métodos
5.
Parasitol Res ; 117(5): 1371-1380, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516214

RESUMO

Infection with Trichomonas vaginalis produces a malodorous seropurulent vaginal discharge due to several chemicals, including polyamines. The presence of 1,4-diamino-2-butanone (DAB) reduces the amount of intracellular putrescine by 90%, preventing the cotransport of exogenous spermine. DAB-treated parasites present morphological changes, which are restored by adding exogenous putrescine into the culture medium. However, the effect of polyamines over the trichomonad proteomic profile is unknown. In this study, we used a proteomic approach to analyze the polyamine-depletion and restoration effect by exogenous putrescine on T. vaginalis proteome. In the presence of inhibitor DAB, we obtained 369 spots in polyamine-depleted condition and observed 499 spots in the normal culture media. With DAB treatment, the intensity of 43 spots was increased but was found to be reduced in 39 spots, as compared to normal conditions. Interestingly, in DAB-treated parasites restored with a medium with added exogenous putrescine, 472 spots were found, of which 33 were upregulated and 63 were downregulated in protein intensity. Some of these downregulated proteins in DAB-treated parasites are involved in several cellular pathways such as glycolysis, glycolytic fermentation, arginine dihydrolase pathway, redox homeostasis, host cell binding mediated by carbohydrate, chaperone function, and cytoskeletal remodeling. Interestingly, the intensity of some of the proteins was restored by adding exogenous putrescine. In conclusion, the presence of DAB altered the proteomic profile of T. vaginalis, resulting in a decrease in the intensity of 130 proteins and an increase in the intensity of 43 proteins that was restored by the addition of putrescine.


Assuntos
Proteoma/efeitos dos fármacos , Putrescina/análogos & derivados , Putrescina/metabolismo , Espermina/metabolismo , Trichomonas vaginalis/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Meios de Cultura/metabolismo , Regulação para Baixo , Feminino , Proteômica/métodos , Putrescina/farmacologia , Vagina/química , Vagina/parasitologia
6.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;49(4): 398-407, July-Aug. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-792794

RESUMO

Abstract: Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.


Assuntos
Humanos , Animais , Cães , Anticorpos Antiprotozoários/imunologia , Vacinas Protozoárias/imunologia , Leishmania/imunologia , Leishmaniose Visceral/prevenção & controle , Antígenos de Protozoários/imunologia , Proteínas de Protozoários/imunologia , Leishmania/classificação
7.
J Proteome Res ; 15(4): 1179-93, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923066

RESUMO

The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.


Assuntos
Estruturas Animais/química , Proteínas de Insetos/isolamento & purificação , Proteômica , Seda/química , Aranhas/fisiologia , Sequência de Aminoácidos , Estruturas Animais/metabolismo , Estruturas Animais/ultraestrutura , Animais , Expressão Gênica , Ontologia Genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Conformação Molecular , Anotação de Sequência Molecular , Seda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA