RESUMO
The main post-translational reversible modulation of proteins is phosphorylation and dephosphorylation, catalyzed by protein kinases (PKs) and protein phosphatases (PPs) which is crucial for homeostasis. Imbalance in this crosstalk can be related to diseases, including cancer. Plenty of evidence indicates that protein tyrosine phosphatases (PTPs) can act as tumor suppressors and tumor promoters. In gastric cancer (GC), there is a lack of understanding of the molecular aspects behind the tumoral onset and progression. Here we describe several members of the PTP family related to gastric carcinogenesis. We discuss the associated molecular mechanisms which support the down or up modulation of different PTPs. We emphasize the Helicobacter pylori (H. pylori) virulence which is in part associated with the activation of PTP receptors. We also explore the involvement of intracellular redox state in response to H. pylori infection. In addition, some PTP members are under influence by genetic mutations, epigenetics mechanisms, and miRNA modulation. The understanding of multiple aspects of PTPs in GC may provide new targets and perspectives on drug development.
Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Neoplasias Gástricas/metabolismo , Helicobacter pylori/enzimologia , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/diagnósticoRESUMO
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Assuntos
Fosfatase 3 de Especificidade Dupla/genética , Fosfatase 3 de Especificidade Dupla/fisiologia , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Humanos , Proteínas Quinases Ativadas por Mitógeno , Neoplasias/enzimologia , Neovascularização Patológica , Fosforilação , Proteínas Tirosina Fosfatases , Proteínas Tirosina QuinasesRESUMO
ABSTRACT Objective To evaluate PTPN22 C1858T polymorphism and the risk of endometriosis. Methods A meta-analysis of 10 published case-control studies (from four articles), with a total sample of 971 cases and 1,181 controls, was performed. We estimated risk (odds ratio and 95% confidence intervals) of endometriosis associations with the C1858T polymorphism. Results A significant increased risk in all genetic models of the variant T allele with endometriosis (odds ratio: 3.14-5.55; p<0.00001-0.002) was found. The analysis without the study whose controls deviated from the Hardy-Weinberg equilibrium exacerbated these effects in the homozygous and recessive models (odds ratio: 7.19-9.45; p<0.00001-0.0002). In the Italian subgroup, a significant risk association was found in the homozygous and recessive models (odds ratio: 8.72-11.12; p=0.002). Conclusion The associations observed between PTPN22 (C1858T) and the risk of endometriosis suggest this polymorphism might be a useful susceptibility marker for this disease.
RESUMO Objetivo Avaliar o polimorfismo PTPN22 C1858T e o risco de endometriose. Métodos Foi realizada uma metanálise de 10 estudos caso-controle publicados (a partir de quatro artigos), com uma amostra total de 971 casos e 1.181 controles. O risco da associação da endometriose com o polimorfismo C1858T foi estimado em razão de chance e intervalo de confiança de 95%. Resultados Observou-se um aumento de risco significativo em todos os modelos genéticos com o alelo variante T e a endometriose (razão de chance: 3,14-5,55; p<0,00001-0,002). A análise sem incluir o estudo, em que os controles não estavam em equilíbrio de Hardy-Weinberg, mostrou aumento significativo nos modelos homozigotos e recessivos (razão de chance: 7,19-9,45; p<0,00001-0,0002). No subgrupo italiano, uma associação significativa foi encontrada considerando os modelos homozigoto e recessivo (razão de chance: 8,72-11,12; p=0,002). Conclusão As associações observadas entre PTPN22 (C1858T) e o risco de endometriose sugerem que este polimorfismo pode ser um marcador de suscetibilidade para a endometriose.
Assuntos
Humanos , Feminino , Polimorfismo Genético , Endometriose/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Estudos de Casos e Controles , Fatores de Risco , Medição de Risco , Estudos de Associação Genética , Frequência do GeneRESUMO
INTRODUÇÃO: As doenças retinianas associadas à neovascularização, tais como a degeneração macular relacionada à idade e as retinopatias diabética e da prematuridade são as principais e mais importantes causas da cegueira em todo o mundo. Nos últimos anos, injeções intravítreas de fármacos com ação antiangiogênica, como o bevacizumabe (BVZ), têm sido de grande valia tanto em pacientes na fase adulta quanto nos recém-natos. Todavia, estudos experimentais in vitro e in vivo sugerem que essas drogas promovam efeitos adversos sobre alguns processos celulares, interferindo diretamente em mecanismos fisiológicos que mantém a homeostase do tecido retiniano, incluindo os mecanismos de proliferação, diferenciação e morte celular. OBJETIVO: investigar o efeito do BVZ nos processos de transcrição e tradução de marcadores da gliose: GFAP e vimentina, de morte celular, caspase-3 e beclina-1, e dos proteoglicanos relacionados à manutenção e desenvolvimento de tecido retiniano: neurocam, fosfacam e sindecam-3. MÉTODOS: Dois modelos experimentais foram usados nesse estudo: 1) linhagem celular de Müller de Glia humana adulta (MIO-M1), cultivada em meio de cultura D-MEM na presença e ausência de BVZ por 12 e 24 horas nas concentrações de 0,25 mg/mL e 0,50 mg/mL e 2) explantes de retinas de ratos 2 dias pós-nascidos submetidos à 0,50 mg/mL da droga por 48 horas. Durante este período foram mantidos a 5% de dióxido de carbono à temperatura de 37°C. A análise de proteínas foi realizada por imunocitohistoquímica e Western Blotting e a expressão de RNAm, pela reação em cadeia da polimerase em tempo real (PCR Real Time). Foi utilizado o Teste de ANOVA - fator único para a comparação entre os grupos controle e tratados com BVZ de um mesmo período (12h ou 24h) e o teste t de Student para a comparação entre as mesmas concentrações de 12h e 24h, e para a comparação entre os grupos controle e tratado com BVZ dos explantes (p < 0,05). RESULTADOS...
Backgraound: Vasoproliferative retinal disorders such as age-related macular, degeneration, diabetic retinopathy and retinopathy of prematurity are major causes of blindness in the world. In recent years, intravitreal injections of drugs with antiangiogenic action, as bevacizumab, have been very useful for both patients in adulthood and in newborns. However, experimental studies, in vivo and in vitro, suggest that antiangiogenic drugs may promote side effects in cellular proceedings, interfering directly in physiological mechanisms of cellular proliferation, differentiation and death. POURPOSE: Investigate the bevacizumab effects in transcription and translation processes of gliosis, GFAP and vimentin, cellular death markers, caspase-3 and beclin-1, and proteoglycans involved in retinal tissue maintenance and development, neurocan, phosphacan and syndecan-3. METHODS: Two experimental models were used on this research: cellular lineage of adult and human Müller glial cell(MIO-M1) were cultivated on D-MEM medium with 0,25 and 0,50 mg/mL bevacizumab for 12 and 24 hours, and two days old rat retinal explants submitted to 0,50 mg/mL for 48 hours. During this period were stored in laboratory ovens at 5% carbon dioxide pressure and 37 °C average temperature. Molecular techniques were used to evaluate gene expression and protein content. Protein assessments were performed by immunocytochemistry and western blotting analysis, while Real Time PCR was used to measure mRNA content. ANOVA tests one factor were applied to compare the control and BVZ groups of the same period (12h or 24h) and t test from Student to compare the same conditions of 12h and 24h, and to compare the control and BVZ retinal explants groups (p<0.05). RESULTS...
Assuntos
Humanos , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular , Neurocam , Retina , Células Ependimogliais , VimentinaRESUMO
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Assuntos
MicroRNAs , Neoplasias/enzimologia , Neoplasias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Estabilidade de RNARESUMO
Therapies that improve leptin sensitivity have potential as an alternative treatment approach against obesity and related comorbidities. We investigated the effects of Socs3 gene ablation in different mouse models to understand the role of SOCS3 in the regulation of leptin sensitivity, diet-induced obesity (DIO) and glucose homeostasis. Neuronal deletion of SOCS3 partially prevented DIO and improved glucose homeostasis. Inactivation of SOCS3 only in LepR-expressing cells protected against leptin resistance induced by HFD, but did not prevent DIO. However, inactivation of SOCS3 in LepR-expressing cells protected mice from diet-induced insulin resistance by increasing hypothalamic expression of Katp channel subunits and c-Fos expression in POMC neurons. In summary, the regulation of leptin signaling by SOCS3 orchestrates diet-induced changes on glycemic control. These findings help to understand the molecular mechanisms linking obesity and type 2 diabetes, and highlight the potential of SOCS3 inhibitors as a promising therapeutic approach for the treatment of diabetes.
RESUMO
Bisphosphonates (BPs), potent inhibitors of bone resorption which inhibit osteoclasts, have also been shown to act on osteocytes and osteoblasts preventing apoptosis via connexin (Cx) 43 hemichannels and activating the extracellular signal regulated kinases ERKs. We previously demonstrated the presence of a saturable, specific and high affinity binding site for alendronate (ALN) in osteoblastic cells which express Cx43. However, cells lacking Cx43 also bound BPs. Herein we show that bound [(3)H]-alendronate is displaced by phosphatase substrates. Moreover, similar to Na3VO4, ALN inhibited the activity of transmembrane and cytoplasmic PTPs, pointing out the catalytic domain of phosphatases as a putative BP target. In addition, anti-phospho-tyrosine immunoblot analysis revealed that ALN stimulates tyrosine phosphorylation of several proteins of whole cell lysates, among which the major targets of the BP could be immunochemically identified as Cx43. Additionally, the transmembrane receptor-like PTPs, RPTPµ and RPTPα, as well as the cytoplasmic PTP1B, are highly expressed in ROS 17/2.8 cells. Furthermore, we evidenced that Cx43 interacts with RPTPµ in ROS 17/2.8 and ALN decreases their association. These results support the hypothesis that BPs bind and inhibit PTPs associated to Cx43 or not, which would lead to the activation of signaling pathways in osteoblasts.