Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(33): 45954-45969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980489

RESUMO

Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.


Assuntos
Glicina , Glifosato , Neonicotinoides , Nitrocompostos , Proteoma , Animais , Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Glicina/análogos & derivados , Glicina/toxicidade , Nitrocompostos/toxicidade , Imidazóis/toxicidade , Inseticidas/toxicidade
2.
Heliyon ; 10(5): e27278, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562502

RESUMO

Protein-Protein Interaction Networks aim to model the interactome, providing a powerful tool for understanding the complex relationships governing cellular processes. These networks have numerous applications, including functional enrichment, discovering cancer driver genes, identifying drug targets, and more. Various databases make protein-protein networks available for many species, including Homo sapiens. This work topologically compares four Homo sapiens networks using a coarse-to-fine approach, comparing global characteristics, sub-network topology, specific nodes centrality, and interaction significance. Results show that the four human protein networks share many common protein-encoding genes and some global measures, but significantly differ in the interactions and neighbourhood. Small sub-networks from cancer pathways performed better than the whole networks, indicating an improved topological consistency in functional pathways. The centrality analysis shows that the same genes play different roles in different networks. We discuss how studies and analyses that rely on protein-protein networks for humans should consider their similarities and distinctions.

3.
MethodsX ; 10: 102179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128282

RESUMO

Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it provides powerful information to detect which cellular processes are active in each individual cell. We have recently developed a protein-protein interaction network-based framework to quantify pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach to quantify the activity of a pathway associated with any biological process, or even any list of genes. A systems-level characterization of pathway activities across multiple cell types provides a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological processes in healthy and cancer breast samples. Using this approach we found that tumor breast cells, even when they form a single group in the UMAP space, keep diverse biological programs active in a differentiated manner within the cluster.•We implement a protein-protein interaction network-based approach to quantify the activity of different biological processes.•The methodology can be used for cell annotation in scRNA-seq studies and is freely available as R package.

4.
MethodsX ; 9: 101778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855951

RESUMO

Trajectory inference is a common application of scRNA-seq data. However, it is often necessary to previously determine the origin of the trajectories, the stem or progenitor cells. In this work, we propose a computational tool to quantify pluripotency from single cell transcriptomics data. This approach uses the protein-protein interaction (PPI) network associated with the differentiation process as a scaffold and the gene expression matrix to calculate a score that we call differentiation activity. This score reflects how active the differentiation network is in each cell. We benchmark the performance of our algorithm with two previously published tools, LandSCENT (Chen et al., 2019) and CytoTRACE (Gulati et al., 2020), for four healthy human data sets: breast, colon, hematopoietic and lung. We show that our algorithm is more efficient than LandSCENT and requires less RAM memory than the other programs. We also illustrate a complete workflow from the count matrix to trajectory inference using the breast data set.•ORIGINS is a methodology to quantify pluripotency from scRNA-seq data implemented as a freely available R package.•ORIGINS uses the protein-protein interaction network associated with differentiation and the data set expression matrix to calculate a score (differentiation activity) that quantifies pluripotency for each cell.

5.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013615

RESUMO

Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.


Assuntos
Caquexia/etiologia , Redes Reguladoras de Genes , MicroRNAs/genética , Neoplasias/complicações , Neoplasias/genética , Caquexia/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Transcriptoma
6.
J Mol Graph Model ; 76: 429-440, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28779688

RESUMO

Somatic activating mutations in the GNAQ have been recently associated with several congenital genetic disorders and tumors; however, the molecular mechanism/etiology that leads to GNAQ somatic mosaic mutation are unknown. Here, we reported a case of Sturge-Weber Syndrome (SWS) manifesting cutaneous vascular malformations (hemifacial Port-wine stain), cerebral and ocular vascular abnormalities (including epilepsy and glaucoma) and harboring a c.548G>A (p.R183Q) somatic mosaic mutation in GNAQ. Computational modeling studies were performed to assistant with the comprehension of the functional impact of p.R183Q and p.Q209L mutations in GNAQ, which encodes a G protein subunit alpha q (Gαq). The p.R183Q mutation was predicted to abolish hydrogen bonds between R183 residue and GDP molecule, destabilizing the inactive GDP-bound conformation of the Gαq mutants. Furthermore, replacement of R183 by Q183 residue was predicted to promote conformation changes in protein surface features affecting the switch I region, a key region that undergoes conformational changes triggered by receptor binding during signal transduction. In addition, replacement of Q209 by L209 residue was predicted to affect the molecular interaction between Gαq and Gß subunit, impairing formation of the inactive heterotrimeric complex. These findings, in association with PPI network analysis, indicate that p.R183Q and p.Q209L mutations result in the over-activation of different downstream effectors, which in turn will determine the distinct cell responses and phenotype. These findings bring new insights on molecular etiology of vascular malformations associated to SWS and on different mechanisms underlying hyperactivation of downstream pathways to Gαq.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Relação Quantitativa Estrutura-Atividade , Adulto , Alelos , Sítios de Ligação , Criança , Análise Mutacional de DNA , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Modelos Moleculares , Fenótipo , Ligação Proteica , Conformação Proteica , Síndrome de Sturge-Weber/diagnóstico , Síndrome de Sturge-Weber/genética
7.
Int J Mol Sci ; 18(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208616

RESUMO

Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. There is no human vaccine available and it is considered by many studies as apotential effective tool for disease control. To discover novel antigens, computational programs have been used in reverse vaccinology strategies. In this work, we developed a validation antigen approach that integrates prediction of B and T cell epitopes, analysis of Protein-Protein Interaction (PPI) networks and metabolic pathways. We selected twenty candidate proteins from Leishmania tested in murine model, with experimental outcome published in the literature. The predictions for CD4⁺ and CD8⁺ T cell epitopes were correlated with protection in experimental outcomes. We also mapped immunogenic proteins on PPI networks in order to find Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with them. Our results suggest that non-protective antigens have lowest frequency of predicted T CD4⁺ and T CD8⁺ epitopes, compared with protective ones. T CD4⁺ and T CD8⁺ cells are more related to leishmaniasis protection in experimental outcomes than B cell predicted epitopes. Considering KEGG analysis, the proteins considered protective are connected to nodes with few pathways, including those associated with ribosome biosynthesis and purine metabolism.


Assuntos
Biologia Computacional , Simulação por Computador , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Alelos , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Mapeamento de Epitopos/métodos , Epitopos/genética , Epitopos/imunologia , Humanos , Leishmania/genética , Leishmania/metabolismo , Vacinas contra Leishmaniose/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA