Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Horm Behav ; 162: 105527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492348

RESUMO

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Assuntos
Bulbo Olfatório , Prolactina , Comportamento Sexual Animal , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/fisiologia , Feminino , Prolactina/metabolismo , Prolactina/farmacologia , Camundongos , Masculino , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Maturidade Sexual/fisiologia , Comportamento Social , Feromônios/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
2.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571383

RESUMO

Maternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning. 16SrRNA sequencing of feces and bioinformatics analysis was performed to evaluate gut microbiota in PRL receptor-null mice (Prlr-KO) at weaning (postnatal day 21). The normalized colon and cecal weights were higher and lower, respectively, in the Prlr-KO mice relative to the wild-type mice (Prlr-WT). Relative abundances (Simpson Evenness Index), phylogenetic diversity, and bacterial concentrations were lower in the Prlr-KO mice. Eleven bacteria species out of 470 differed between the Prlr-KO and Prlr-WT mice, with two genera (Anaerotruncus and Lachnospiraceae) related to metabolic disease development being the most common in the Prlr-KO mice. A higher metabolism of terpenoids and polyketides was predicted in the Prlr-KO mice compared to the Prlr-WT mice, and these metabolites had antimicrobial properties and were present in microbe-associated pathogenicity. We concluded that the absence of the PRL receptor altered gut microbiota, resulting in lower abundance and richness, which could contribute to metabolic disease development.


Assuntos
Microbioma Gastrointestinal , Receptores da Prolactina , Camundongos , Animais , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Desmame , Filogenia , Prolactina , Camundongos Knockout
3.
J Clin Endocrinol Metab ; 108(7): e450-e457, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36638053

RESUMO

CONTEXT: Knockout prolactin receptor gene (PRL-R) mice are animal models for prolactinomas and PRL acts via autocrine/paracrine inhibiting lactotroph proliferation. Recently, variants of the PRL-R were identified in prolactinoma patients and their frequency was higher compared to individuals from the genomic database. OBJECTIVE: We analyzed PRL-R variants frequency in an extensive cohort of prolactinoma patients and evaluated their association with clinical, laboratorial, and imaging characteristics and hormonal response to cabergoline. DESIGN: Observational, retrospective, and cross-sectional study. SETTING: This study took place at the Neuroendocrinology Unit of Clinics Hospital, Medical School of University of São Paulo, Brazil, a tertiary referral center. PATIENTS AND METHODS: Study participants included adults with sporadic prolactinomas treated with cabergoline, where response to therapy was defined by prolactin normalization with up to 3 mg/week doses. DNA was extracted from blood samples and the PRL-R was analyzed by polymerase chain reaction techniques and automatic sequencing. The association of PRL-R variants with serum prolactin levels, maximal tumor diameter, tumor parasellar invasiveness, and response to cabergoline was analyzed. RESULTS: We found 6 PRL-R variants: p.Ile100(76)Val, p.Ile170(146)Leu, p.Glu400(376)Gln/p.Asn516(492)Ile, p.Glu470Asp e p.Ala591Pro; the last 2 are newly described in prolactinomas' patients. The variants p.Glu400(376)Gln/p.Asn516(492)Ile and p.Ala591Pro were more frequent amongst patients compared to genomic databases, and the p.Asn516(492)Ile showed pathogenic potential using in silico analysis as previously described. PRL-R variants were associated with male sex (P = 0.015), higher serum PRL levels (P = 0.007), larger tumors (P = 0.001), and cabergoline resistance (P < 0.001). CONCLUSIONS: The prolactin/prolactin receptor system seems to be related to prolactinoma tumorigenesis and cabergoline resistance. Additional studies are needed to better understand the PRL-R variants' role and their potential as therapeutic targets.


Assuntos
Neoplasias Hipofisárias , Prolactinoma , Masculino , Humanos , Animais , Camundongos , Prolactinoma/tratamento farmacológico , Prolactinoma/genética , Agonistas de Dopamina/uso terapêutico , Cabergolina/uso terapêutico , Receptores da Prolactina , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Prolactina/genética , Ergolinas/farmacologia , Ergolinas/uso terapêutico , Estudos Retrospectivos , Estudos Transversais , Camundongos Knockout
4.
Animals (Basel) ; 12(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36078009

RESUMO

Prolactin (PRL) is a hormone expressed in lactotrophs cells of the pituitary gland in primates. Extra pituitary expression of PRL has been reported, including the eye; however, expression in the developing eye of primates is limited. The aim of the study was determining the expression of PRL and PRL receptor (PRLR) (mRNAs and proteins) in adult and fetal baboon (Papio hamadryas) ocular tissues. METHODS: We analyzed PRL and PRLR in baboon eyes tissues by immunofluorescence. The mRNAs of PRL and PRLR were detected by RT-PCR, cDNA was cloned, and sequenced. Furthermore, we performed a phylogenetic analysis to identify the evolutionary forces that underlie the divergence of PRL and PRLR primate genes. RESULTS: We observed the expression of PRL and PRLR (mRNAs and proteins) in all retinal cell lineages of fetal and adult baboon. PRL and PRLR fit the hypothesis of evolutionary purifying gene selection. CONCLUSIONS: mRNA and protein of PRL and PRLR are expressed in fetal and adult baboon retinal tissue. PRL may trigger autocrine and paracrine-specific actions in retinal cell lines.

5.
Oncol Lett ; 24(2): 288, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35814823

RESUMO

Natural killer (NK) cells play a crucial role in cervical cancer (CC). As estrogens and prolactin (PRL) have been reported to be involved in CC, the present study attempted to elucidate the effects of both hormones on NK cells in CC. For this purpose, NKL cells, as well as CC-derived cell lines (HeLa, SiHa and C33A) and non-tumorigenic keratinocytes (HaCaT cells) were stimulated with 17ß-estradiol (E2; 10 nM), PRL (200 ng/ml), or both (E2 and PRL) for 48 h. The expression of hormone receptors (estrogen receptor α and ß, G protein-coupled estrogen receptor 1 and PRL receptor) and NK cell activating receptors [natural killer group 2D (NKG2D), natural cytotoxicity triggering receptor 3, natural cytotoxicity triggering receptor 2 and natural cytotoxicity triggering receptor 1] were measured using western blot analysis and flow cytometry, respectively. In the HeLa, SiHa, C33A and HaCaT cells stimulated with the hormones, the expression of NKG2D ligands [MHC class I polypeptide-related sequence A/B (MICA/B)] on the membrane and the soluble form of MICA was evaluated using flow cytometry and ELISA. Cytotoxicity assay was performed using GFP-transfected K562 cells as target cells. E2 reduced NKL cell-mediated cytotoxicity, while PRL exerted the opposite effect. NKL cells expressed different hormone receptor forms, of which PRL only induced a decrease in NKG2D expression compared to the untreated control NKL cells. PRL increased MICA/B expression in HeLa cells and E2 and PRL reversed this effect. However, in SiHa cells, the concurrent incubation with the two hormones decreased MICA/B expression. E2 and PRL, either alone or in combination, decreased soluble MICA secretion in all CC cell lines, while E2 solely increased soluble MICA secretion in SiHa cells. On the whole, the present study provides evidence that E2 and PRL mediate the mechanisms through which NK and CC cells mediate a cytotoxic response and these have an antagonistic effect on NK cell-mediated cytotoxicity.

6.
Front Endocrinol (Lausanne) ; 12: 747810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745013

RESUMO

Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone's modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.


Assuntos
Transformação Celular Neoplásica , Neoplasias dos Genitais Femininos/patologia , Prolactina/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Neoplasias dos Genitais Femininos/metabolismo , Humanos , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Receptores da Prolactina/fisiologia , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
7.
Reprod Biol Endocrinol ; 19(1): 94, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158080

RESUMO

BACKGROUND: The male and female prostates are controlled by steroid hormones, suffering important morphological and physiological changes after castration. Prolactin is involved in the regulation of the male prostate, having already been identified in the tissue, acting through its receptor PRLR. In the Mongolian gerbil, in addition to the male prostate, the female prostate is also well developed and active in its secretion processes. The aim of the present study was to evaluate the effects of exposure to exogenous prolactin in the prostate of both intact and castrated male and female gerbils in order to establish if prolactin administration can sustain prostate cell activity in conditions of sexual hormone deprivation. METHODS: The morphological analyses were performed by biometric analysis, lesion histological analysis and morphometric-stereological aspects. In addition, immune-cytochemical tests were performed for prolactin and its receptor, as well as for the receptors of androgen and oestrogen and serum prolactin dosage. All data were submitted to ANOVA or Kruskal-Wallis tests for comparison between groups. P < 0.05 was considered to be statistically significant. RESULTS: The results showed a strong influence of prolactin on the morphology of the prostate, with the development of important epithelial alterations, after only 3 days of administration, and an expressive epithelial cell discard process after 30 days of administration. Prolactin acts in synergy with testosterone in males and mainly with oestrogens in females, establishing different steroid hormonal receptor immunoreactivity according to sex. It was also demonstrated that prolactin can assist in the recovery from some atrophic effects caused in the gland after castration, without causing additional tissue damage. CONCLUSIONS: The prolactin and its receptor are involved in the maintenance of the homeostasis of male and female gerbils, and also cause distinct histological alterations after exogenous exposure for 3 and 30 days. The effects of prolactin are related to its joint action on androgens and oestrogens and it can also assist in the recovery from the atrophic effects of castration.


Assuntos
Orquiectomia/efeitos adversos , Ovariectomia/efeitos adversos , Prolactina/administração & dosagem , Próstata/efeitos dos fármacos , Próstata/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Atrofia , Feminino , Gerbillinae , Masculino , Orquiectomia/tendências , Ovariectomia/tendências , Prolactina/metabolismo , Próstata/metabolismo , Receptores da Prolactina/agonistas , Receptores da Prolactina/metabolismo , Recuperação de Função Fisiológica/fisiologia
8.
Gen Comp Endocrinol ; 309: 113791, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872604

RESUMO

Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.


Assuntos
Prolactina , Receptores da Prolactina , Animais , Evolução Molecular , Feminino , Mamíferos/genética , Mamíferos/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
9.
Rev Neurosci ; 32(3): 323-340, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33661585

RESUMO

Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Sistema Nervoso Central , Humanos , Inflamação , Prolactina
10.
Front Endocrinol (Lausanne) ; 12: 619696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746901

RESUMO

Prolactin (PRL) levels are reduced in the circulation of rats with diabetes or obesity, and lower circulating levels of PRL correlate with increased prevalence of diabetes and a higher risk of metabolic alterations in the clinic. Furthermore, PRL stimulates ß-cell proliferation, survival, and insulin production and pregnant mice lacking PRL receptors in ß-cells develop gestational diabetes. To investigate the protective effect of endogenous PRL against diabetes outside pregnancy, we compared the number of cases and severity of streptozotocin (STZ)-induced hyperglycemia between C57BL/6 mice null for the PRL receptor gene (Prlr-/- ) and wild-type mice (Prlr+/+ ). STZ-treated diabetic Prlr-/- mice showed a higher number of cases and later recovery from hyperglycemia, exacerbated glucose levels, and glucose intolerance compared to the Prlr+/+ mice counterparts. Consistent with the worsening of hyperglycemia, pancreatic islet density, ß-cell number, proliferation, and survival, as well as circulating insulin levels were reduced, whereas α-cell number and pancreatic inflammation were increased in the absence of PRL signaling. Deletion of the PRL receptor did not alter the metabolic parameters in vehicle-treated animals. We conclude that PRL protects whole body glucose homeostasis by reducing ß-cell loss and pancreatic inflammation in STZ-induced diabetes. Medications elevating PRL circulating levels may prove to be beneficial in diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Intolerância à Glucose/genética , Insulina/sangue , Receptores da Prolactina/genética , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/sangue , Intolerância à Glucose/sangue , Células Secretoras de Insulina/metabolismo , Camundongos , Receptores da Prolactina/metabolismo
11.
Cells ; 10(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557010

RESUMO

Self-reactive immature B cells are eliminated through apoptosis by tolerance mechanisms, failing to eliminate these cells results in autoimmune diseases. Prolactin is known to rescue immature B cells from B cell receptor engagement-induced apoptosis in lupus-prone mice. The objective of this study was to characterize in vitro prolactin signaling in immature B cells, using sorting, PCR array, RT-PCR, flow cytometry, and chromatin immunoprecipitation. We found that all B cell maturation stages in bone marrow express the prolactin receptor long isoform, in both wild-type and MRL/lpr mice, but its expression increased only in the immature B cells of the latter, particularly at the onset of lupus. In these cells, activation of the prolactin receptor promoted STAT3 phosphorylation and upregulation of the antiapoptotic Bcl2a1a, Bcl2l2, and Birc5 genes. STAT3 binding to the promoter region of these genes was confirmed through chromatin immunoprecipitation. Furthermore, inhibitors of prolactin signaling and STAT3 activation abolished the prolactin rescue of self-engaged MRL/lpr immature B cells. These results support a mechanism in which prolactin participates in the emergence of lupus through the rescue of self-reactive immature B cell clones from central tolerance clonal deletion through the activation of STAT3 and transcriptional regulation of a complex network of genes related to apoptosis resistance.


Assuntos
Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose , Camundongos , Camundongos Endogâmicos MRL lpr
12.
Peptides ; 135: 170425, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053420

RESUMO

Prolactin (PRL) is known to exert neuroprotective effects against excitotoxic damage in the hippocampus of female rats, both in vitro and in vivo. It is still unknown whether this effect can be seen in the male hippocampus and intracellular signaling mediating such action. To assess this, adult male CD-1 mice were subjected to excitotoxic damage with kainic acid (KA; i.c.v.), after a) no manipulation (control group), b) treatment with saline, and c) treatment with PRL (8 µg of PRL/100 µl of saline s.c.). Treatments consisted of one daily injection of the mentioned dosage for seven consecutive days until the day of the excitotoxic lesion. Neurodegeneration (Fluoro-Jade C), neuronal survival (NeuN) and astrogliosis (GFAP) markers were identified with immunohistochemistry in the CA1, CA3 and CA4 areas of the dorsal hippocampus, as well as PRL-related protein levels by Western blot in the whole hippocampus 48 h after excitotoxicity. Anatomical measurements revealed a preferential protective effect of PRL against excitotoxic damage in the CA3 hippocampal subfield, with lower levels of cell death and neurodegeneration, compared to controls. In CA4, the results were not conclusive, and no damage was observed in CA1 after KA administration. PRL treatment provoked an upregulation of active Akt, a well-known cell survival pathway, after KA administration. PRL also caused downregulation of active MAPK, independently of the excitotoxic damage. The present results indicate a neuroprotective role for PRL preferentially located in the CA3 area of the hippocampus of male mice, possibly mediated by Akt-related survival mechanisms.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Prolactina/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Ácido Caínico/toxicidade , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurotoxinas/toxicidade , Ratos
13.
Expert Opin Ther Targets ; 24(11): 1121-1133, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32896197

RESUMO

Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Receptores da Prolactina/metabolismo , Adulto , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Terapia Genética/métodos , Glioblastoma/patologia , Humanos , Masculino , Terapia de Alvo Molecular , Prognóstico , Prolactina/metabolismo
14.
Neurosci Lett ; 694: 116-123, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500398

RESUMO

Neuroprotective effects of short prolactin (PRL) pre-treatment against kainic acid (KA)-induced damage include neuron loss avoidance in all hippocampal regions and attenuation of seizures. Recent evidence points PRL receptor (PRL-R) as mediator of such neuroprotective effects and seizures as regulators of neuronal marker transcript expression in the hippocampus. Here, we investigated if a daily PRL dose of 100 µg or vehicle for 14 days in ovariectomized rats (OVX) prevents neuron loss induced by KA administered on the third day of PRL treatment in a systemic single dose of 7.5 mg/kg or vehicle, and promotes PRL-R, vesicular glutamate transporter 1 (VGLUT1) and glutamic acid decarboxylase 65 (GAD65) expression changes in the hippocampus of sacrificed rats 27 days after the KA administration. Immunostaining for Neu-N and PRL-R revealed significant neuron number and PRL-R expression reduction induced by KA that was prevented and turned into overexpression respectively in all hippocampal regions when PRL was added; while VGLUT1,and GAD65 immunostaining displayed expression decrease in the CA1 of injured rats, prevented in the last case and turned into VGLUT1, overexpression when administered PRL. These data indicate that chronic PRL administration before damage induces hippocampal neuroprotection associated with PRL-R and VGLUT1 overexpression, the latter in a regiondependent way.


Assuntos
Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Prolactina/administração & dosagem , Receptores da Prolactina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Ratos
15.
J Mol Histol ; 48(5-6): 403-415, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988314

RESUMO

Despite the androgenic dependence, other hormones, growth factors, and cytokines are necessary to support prostatic growth and maintain the glandular structure; among them, prolactin is a non-steroidal hormone secreted mainly by the pituitary gland. However, extra-pituitary expression of prolactin, such as in the prostate, has also been demonstrated, highlighting the paracrine and autocrine actions of prolactin within the prostate. Here, we investigated whether prolactin modulation alters ventral prostate (VP) morphophysiology in adult castrated rats. Sprague Dawley rats were castrated and after 21 days, divided into ten experimental groups (n = 6/group): castrated control: castrated animals that did not receive treatment; castrated+testosterone: castrated animals that received T (4 mg/kg/day); castrated+PRL (PRL): castrated animals receiving prolactin (0.3 mg/kg/day); castrated+T+PRL: castrated animals that received a combination of testosterone and prolactin; and castrated+bromocriptine (BR): castrated animals that received bromocriptine (0.4 mg/kg/day). The control group included intact animals. The animals were treated for 3 or 10 consecutive days. At the end of experimental period, the animals were euthanized, and the blood and VP lobes were collected and analyzed by different methods. The main findings were that the administration of prolactin to castrated rats did not exert anabolic effects on the VP. Although we observed activation of downstream prolactin signaling after prolactin administration, this was not enough to overcome the prostatic androgen deficiency. Likewise, there was no additional glandular involution in the castrated group treated with bromocriptine. We concluded that despite stimulating the downstream signaling pathway, exogenous prolactin does not act on VP in the absence or presence of high levels of testosterone.


Assuntos
Envelhecimento/metabolismo , Castração , Terapia de Reposição Hormonal , Prolactina/metabolismo , Próstata/metabolismo , Testosterona/uso terapêutico , Animais , Western Blotting , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo
16.
Endocrine ; 57(2): 199-213, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634745

RESUMO

INTRODUCTION: Prolactin is a peptide hormone mainly synthetized and secreted by the anterior pituitary gland, but also by extrapituitary tissues, such as mammary gland, decidua, prostate, skin, and possibly the brain. Similarly, prolactin receptor is expressed in the pituitary gland, many peripheral tissues, and in contrast to prolactin, its receptor has been consistently detected in several brain regions, such as cerebral cortex, olfactory bulb, hypothalamus, hippocampus, amygdala, among others. Classically, prolactin function has been related to the stimulation of lactogenesis and galactopoiesis, however, it is well known that prolactin induces a wide range of functions in different brain areas. PURPOSE: The aim of this review is to summarize recent reports on prolactin and prolactin receptor synthesis and localization, as well as recapitulate both the classic functions attributed to this hormone in the brain and the recently described functions such as neurogenesis, neurodevelopment, sleep, learning and memory, and neuroprotection. CONCLUSION: The distribution and putative expression of prolactin and its receptors in several neuronal tissues suggests that this hormone has pleiotropic functions in the brain.


Assuntos
Química Encefálica/fisiologia , Prolactina/biossíntese , Prolactina/fisiologia , Animais , Química Encefálica/genética , Humanos , Prolactina/genética , Receptores da Prolactina/metabolismo
17.
Arch. endocrinol. metab. (Online) ; 60(6): 587-595, Nov.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-827788

RESUMO

ABSTRACT Prolactin is best known for its effects of stimulating mammary gland development and lactogenesis. However, prolactin is a pleiotropic hormone that is able to affect several physiological functions, including fertility. Prolactin receptors (PRLRs) are widely expressed in several tissues, including several brain regions and reproductive tract organs. Upon activation, PRLRs may exert prolactin’s functions through several signaling pathways, although the recruitment of the signal transducer and activator of transcription 5 causes most of the known effects of prolactin. Pathological hyperprolactinemia is mainly due to the presence of a prolactinoma or pharmacological effects induced by drugs that interact with the dopamine system. Notably, hyperprolactinemia is a frequent cause of reproductive dysfunction and may lead to infertility in males and females. Recently, several studies have indicated that prolactin may modulate the reproductive axis by acting on specific populations of hypothalamic neurons that express the Kiss1 gene. The Kiss1 gene encodes neuropeptides known as kisspeptins, which are powerful activators of gonadotropin-releasing hormone neurons. In the present review, we will summarize the current knowledge about prolactin’s actions on reproduction. Among other aspects, we will discuss whether the interaction between prolactin and the Kiss1-expressing neurons can affect reproduction and how kisspeptins may become a novel therapeutic approach to treat prolactin-induced infertility.


Assuntos
Humanos , Masculino , Feminino , Prolactina/metabolismo , Reprodução/fisiologia , Kisspeptinas/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Hiperprolactinemia/complicações , Transdução de Sinais , Fatores Sexuais , Hipotálamo/metabolismo , Infertilidade/etiologia
18.
Mol Hum Reprod ; 22(11): 800-808, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27470501

RESUMO

STUDY QUESTION: What is the role of the endocannabinoid system (eCS) in the alterations of the endocrine system in a murine model of lipopolysaccharide (LPS)-induced miscarriage? SUMMARY ANSWER: In 7-days pregnant wild type, but not cannabinoid receptor type 1 knockout (CB1-KO) mice, LPS increased COX-2 expression and prostaglandin F2α (PGF2α) production in the uterus leading to lower expression of prolactin receptor in the ovary and a marked regression of corpora lutea (CL), suggesting that the eCS mediates the deleterious effects of LPS on reproductive events. WHAT IS KNOWN ALREADY: Appropriate systemic progesterone levels are critical for a successful pregnancy outcome. Precocious loss of luteal progesterone (P4) secretion leads to miscarriage in rodents. We have previously shown that LPS administration to pregnant mice induces embryonic resorption accompanied by a dramatic decrease in systemic progesterone levels in a murine model of inflammatory miscarriage, with the eCS mediating these LPS-induced deleterious effects. STUDY DESIGN SAMPLES/MATERIALS, METHODS: CD1 wild-type (WT) and CB1-KO mice were randomly allocated to Vehicle (saline; i.p.) or LPS (0.5 µg/g body weight; i.p.) treated groups: (WT-Vehicle; WT-LPS; CB1-KO-Vehicle and CB1-KO-LPS). A single injection was given on day 7 of pregnancy and tissues (blood, ovary, uterus) were collected 6, 12, 24 and 48 h later. P4 and PGF2α plasma levels were determined by radioimmunoassay. Cyclooxygenase-2 (COX-2) mRNA (RT-PCR) and protein (Western blot) content in uterus was assayed. COX-2 and prolactin receptor (PrlR) mRNA levels in the ovary were assayed by RT-PCR. Tissue morphology of the CL was assessed by haematoxylin-eosin staining. MAIN RESULTS AND THE ROLE OF CHANCE: Treatment of 7-day pregnant WT mice with LPS induced a P4 withdrawal (p < 0.05), increased in uterine COX-2 mRNA and protein expression (p < 0.05) as well as an increase in uterine PGF2α production (p < 0.05). These changes were absent in LPS-treated 7-day pregnant CB1-KO mice. In ovarian tissues, LPS treatment to 7-day pregnant WT mice induced a downregulation of PrlR mRNA expression (p < 0.05) together with an increase in COX-2 mRNA expression (p < 0.05) and PGF2α content (p < 0.05). These effects were absent in the CB1-KO mice. Collectively, our results suggest a role for the eCS mediating LPS-induced deleterious effects on reproductive tissues. LIMITATIONS, REASONS FOR CAUTION: An important caveat of this study is the endocrine differences between mice and humans during pregnancy (e.g. P4 is produced by the CL throughout pregnancy in mice, whereas this is not the case in humans), which limits the extrapolation of the results presented here. WIDER IMPLICATIONS OF THE FINDINGS: Our findings provide new insights in the role of the endocannabinoid system in the physiopathology of reproduction as well as the role of this endogenous system as a mediator of LPS deleterious effects on reproductive tissues. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTERESTS: Dr Ana María Franchi was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2010/0813 and PICT 2013/0097) and by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2012/0061). The authors have no competing interests.


Assuntos
Aborto Espontâneo/tratamento farmacológico , Aborto Espontâneo/metabolismo , Endocanabinoides/metabolismo , Lipopolissacarídeos/toxicidade , Fase Luteal/metabolismo , Progesterona/metabolismo , Animais , Corpo Lúteo/metabolismo , Feminino , Luteólise/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Radioimunoensaio
19.
Vet Parasitol ; 224: 33-38, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27270387

RESUMO

The in vitro effect of prolactin (PRL) on the growth and motility of Toxocara canis larvae was assessed. Additionally, the expression and location of prolactin receptors (PRL-Rs) were determined in the larvae. Larvae of T. canis were incubated with different concentrations of PRL for different periods of time. The stimulated larvae accelerated their enlargement and increased their motility. The mean percentage of PRL-R+ cells in non-stimulated larvae, measured by flow cytometry was 7.3±0.3%. Compared with non-stimulated larvae, the mean fluorescence intensity (p<0.05) increased in larvae incubated with 40ng/mL of PRL for 10 days. A 465-bp length fragment was amplified from larvae gDNA by PCR. The sequence of this fragment showed 99% similarity with the gene fragment that codes for the PRL-R of the domestic dog. A high concentration of PRL-Rs was immune-located in the posterior region of the larval intestine; therefore, the intestinal cells in this region were most likely the targets for this hormone. Based on these results, PRL-Rs were identified in T. canis larvae, and the in vitro stimulation with PRL increased the number of these receptors, accelerated the growth and modified the activity of larvae. All of the above suggest that T. canis larvae are evolutionarily adapted to recognize the PRL of their definitive host and furthermore might explain the reactivation of tissue-arrested larvae during the gestation of bitches, which does not occur in gestating females of other species.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Toxocara canis/efeitos dos fármacos , Toxocara canis/fisiologia , Toxocaríase/parasitologia , Animais , Hormônios/farmacologia , Técnicas In Vitro , Larva , Toxocara canis/genética , Toxocara canis/crescimento & desenvolvimento
20.
Electron. j. biotechnol ; Electron. j. biotechnol;18(6): 389-392, Nov. 2015. ilus, graf
Artigo em Inglês | LILACS | ID: lil-772280

RESUMO

Background Prolactin (PRL) regulates development and reproduction, and its effects are mediated by the prolactin receptor (PRLR). In order to clarify the role of PRLR and PRL in the process of follicular development in the goose ovary, the level of PRLR mRNA expression in the ovary and follicles of the Sichuan white goose was determined, as well as the PRL concentration in ovarian follicles. Results The level of PRLR mRNA in the hierarchical follicles (HFs) initially increased, and subsequently decreased, whereas PRLR expression was initially low and later increased in postovulatory follicles (POFs). The level of PRLR mRNA expression was the highest in the F4 follicles, and lowest in the F1 follicles in all of the examined follicles. Compared with the level of PRLR mRNA expression in the small white follicles (SWFs), the level of PRLR mRNA was 2.86- and 1.44-fold higher in the F4 and small yellow follicles (SYFs), respectively (P < 0.05). The level of PRLR mRNA expression in the F4 follicles was highest (P < 0.05) in HFs. The highest PRL concentration in all of the examined samples was observed in SYFs and F1, with concentration of 6162 mLU/g and 6197 mLU/g, respectively. The PRL concentration in SYFs was significantly higher compared with SWFs (P < 0.05). Conclusions The change of PRL concentration was similar to the PRLR mRNA expression level in preovulatory follicles. These results suggest that the PRL mediated by the PRLR plays a stimulatory role in the SWF to SYF transition.


Assuntos
Animais , Prolactina/fisiologia , Receptores da Prolactina/fisiologia , Gansos , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Receptores da Prolactina/genética , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA