Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 293, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112831

RESUMO

Probiotics are live microorganisms that, when administered in adequate quantities, provide health benefits to the host. In this study, phenotypic and genotypic methods were used to evaluate the probiotic properties of Bacillus altitudinis 1.4. The isolate was sensitive to all antimicrobials tested and presented a positive result in the hemolysis test. B. altitudinis 1.4 spores were more resistant than vegetative cells, when evaluated in simulation of cell viability in the gastrointestinal tract, as well as adhesion to the intestinal mucosa. The isolate was capable of self-aggregation and coaggregation with pathogens such as Escherichia coli ATCC 25922 and Salmonella Enteritidis ATCC 13076. Genomic analysis revealed the presence of genes with probiotic characteristics. From this study it was possible to evaluate the gene expression of pro-inflammatory and anti-inflammatory cytokines for different treatments. Viable vegetative cells of B. altitudinis 1.4 increased the transcription of pro-inflammatory factors, in addition to also increasing the transcription of IL-10, indicating a tendency to stimulate a pro-inflammatory profile. Given the results presented, B. altitudinis 1.4 showed potential to be applied in the incorporation of this microorganism into animal feed, since the spores could tolerate the feed handling and pelletization processes.


Assuntos
Bacillus , Genoma Bacteriano , Probióticos , Probióticos/farmacologia , Bacillus/genética , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , Citocinas/genética , Escherichia coli/genética , Esporos Bacterianos/genética , Aderência Bacteriana , Salmonella enteritidis/genética , Ração Animal/microbiologia , Antibacterianos/farmacologia , Animais
2.
Microb Pathog ; 194: 106817, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033935

RESUMO

This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.


Assuntos
Ração Animal , Ciclídeos , Dieta , Frutas , Probióticos , Animais , Probióticos/administração & dosagem , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/imunologia , Dieta/veterinária , Peroxidase/metabolismo , Óxido Nítrico/metabolismo , Intestinos/microbiologia , Intestinos/imunologia , Pele , Imunidade Humoral , Muco/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo
3.
Vet Res Commun ; 48(5): 3019-3033, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38980588

RESUMO

Postpartum reproductive infections in cows generate significant economic losses. The use of lactic acid bacteria in animal health is an alternative tool to avoid antibiotic therapy in the prevention/treatment of bovine reproductive infections. In previous studies, 6 lactic bacteria from bovine mammary glands and vagina with beneficial, safe and technological characteristics were selected, and included in probiotic/phytobiotic formulas (combined with Malva and Lapacho extracts). In this work, probiotic and phytobiotic formulations were designed and their long-term viability determined. They were administered intravaginally to 30 females pregnant bovine pre and postpartum. The modification of the native microbiota and permanence/colonization of cultivable bacteria was evaluated, and also the safety of the designed products through the application of nutritional, clinical, hematological and biochemical parameters. The microorganisms maintained their viability up to 9 months at refrigeration temperature. The number of cultivable bacteria showed different pattern: total aerobic mesophylls increased slightly in all experimental groups, while Enterobacteriaceae increased after delivery, except in beneficial acid lactic bacteria + vegetable extract cows. Control and vegetable extract females showed the highest numbers of Enterobacteriaceae at the end of the trial (30 days postpartum). The number of lactic acid bacteria increased significantly in all the groups between 15 days pre and postpartum. The different parameters evaluated demonstrate the safety and harmlessness of the designed formulas, without producing local and systemic adverse effects in the cows.


Assuntos
Probióticos , Animais , Feminino , Bovinos , Probióticos/farmacologia , Probióticos/administração & dosagem , Administração Intravaginal , Gravidez , Vagina/microbiologia , Vagina/efeitos dos fármacos
4.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39043449

RESUMO

Intestinal infections caused by non-typhoidal Salmonella spp., along with antimicrobial resistance spread are a major food safety concern worldwide. Here, we evaluate the potential of competitive exclusion products developed by anaerobic or aerobic conditions to control systemic infection, cecal colonization, fecal excretion, and improve the intestinal health in broilers challenged by Salmonella Heidelberg (SH). A total of 105 day-old chickens were randomly distributed into three experimental groups: A (untreated control), B (treated with anaerobic culture), and C (treated with aerobic culture). During 21 days, morphometric parameters of the small intestine were analyzed using microscopy, fecal excretions by cloacal swabs, systemic infection, and cecal colonization by colony-forming unit counts (CFU/g). The results indicated the lowest number of positive swabs (45.33%) recovered from Group C, followed by Group B (71.8%) and Group A (85.33%). The bacterial enumeration revealed the lowest amounts in Group C at the necropsy realized in 5-, 7-, and 14-days post-infection (DPI) (P = 0.0010, P = 0.0048, and P = 0.0094, respectively). Statistical differences between intestinal morphometrics were observed in the Group C at 21 DPI. Our results suggest that the product developed under aerobic conditions can improve intestinal health, protecting birds against SH.


Assuntos
Ceco , Galinhas , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/microbiologia , Ceco/microbiologia , Fezes/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Antibacterianos/farmacologia
5.
AMB Express ; 14(1): 86, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080197

RESUMO

Maintaining cleaner and more sustainable ecosystems by mitigating greenhouse gas (GHG) emissions from livestock through dietary manipulation is in demand. This study was aimed to assess the effect of Moringa oleifera seeds and probiotics (Pediococcus acidilactici BX-B122 and Bacillus coagulans BX-B118) as feed supplements on GHG production and fermentation profile from steers and sheep. The treatments included diets containing 0, 6, 12, and 18% of M. oleifera seeds meal and a mixture of probiotic bacteria (0.2 ml/g of diet). Total biogas production, CH4, CO, and H2S emission from animals (up to 48 h), rumen fermentation profile, and CH4 conversion efficiency were recorded using standard protocols. Results showed interaction among M. oleifera seeds and probiotics on asymptotic biogas production and total biogas production up to 48 h (P < 0.05). The rate of CH4 emission in steers was reduced from 0.1694 to 0.0447 ml/h using 6 and 18% of M. oleifera seeds (P < 0.05). Asymptotic CO and the rate of CO production were increased (P < 0.05) by supplementing different doses of M. oleifera seeds and probiotics. Adding 12% of M. oleifera seeds and probiotics reduced H2S production from 0.0675 to 0.0112 ml H2S/g DM (at 48 h of fermentation) in steers. In sheep, the additives mitigated H2S production from 0.0364 to 0.0029 ml H2S/g DM (at 48 h of fermentation), however there were not interaction (P = 0.7744). In addition, M. oleifera seeds and probiotics reduced the pH level and dry matter degradability (DMD) in steers and sheep (P < 0.0001) showing a positive impact on CH4:ME and CH4:OM (in steers) and CH4:SCFA (in sheep), while the interaction was not significant (P > 0.05) for CH4:SCFA (in steers) and CH4:ME and CH4:OM (in sheep). In conclusion, the interaction of M. oleifera seeds and probiotics in the feeding diet reduced GHG emissions and affected the fermentation profile of steers and sheep.

6.
Heliyon ; 10(12): e33034, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005895

RESUMO

Acute hepatopancreatic necrosis (AHPND) is a severe bacterial disease affecting farmed shrimp. Although various pathogenic bacteria associated with AHPND-affected shrimp have been described, little is known about the bacterial signatures in the stomachs and intestines when the disease occurs naturally. In this study, we characterized the microbiome of P. vannamei by high-throughput sequencing (HTS). Shrimp samples were collected from a commercial farm and divided into two groups: healthy and affected by AHPND, confirmed by PCR. Stomach and intestine samples were subjected to microbiome analysis targeting the V3-V4 region of the 16S rRNA gene. PERMANOVA analysis revealed a significant disparity in the bacterial diversity between the stomach and intestine microbiomes of these two health conditions. Our results suggest that the significant abundance of Vibrio brasiliensis and V. sinaloensis in the intestines of affected shrimp plays a role in AHPND infection. This imbalance could be mitigated by the presence of Pseudoalteromonas, Gilvimarinus, and other members of the phylum Pseudomonadota such as Cellvibrionaceae, Psychromonadaceae, and Halieaceae, which showed significant abundance in healthy intestines. This study highlights the significance of the microbial community in the differentiation of specific microbial signatures in different organs of P. vannamei. These findings offer a deeper understanding of the intricate dynamics within the shrimp microbiome under these conditions, enriching our view of AHPND progression and paving the way toward future identification of probiotics tailored for more efficient management of this disease.

7.
Int Dent J ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025745

RESUMO

We assessed the impact of probiotics on outcomes related to caries in children and/or adolescents without underlying systemic diseases. We performed a comprehensive meta-analysis of randomised controlled trials (RCTs). Searches were performed in Embase, PubMed, Scopus and Web of Science until March 2023 for RCTs assessing probiotics with a minimum intake duration of 0.2 months vs. control (no treatment or placebo) and reporting at least one primary or secondary outcome. Primary outcomes were number of carious, Streptococcus mutans count, and Lactobacillus count; secondary outcomes were bacterial plaque index, gingival index, salivary pH, and bleeding index. We performed meta-analyses with random effects models and the inverse variance method. Effects were described as mean difference (MD) with their 95% confidence intervals (95%CI). The risk of bias was assessed with the RoB 2.0 tool. The GRADE methodology was used to assess the quality of evidence (QoE). Nineteen RCTs were included (n = 2622), with a follow-up range of 0.2 to 108 months. Probiotics had no effect on reduction of dental caries (MD -0.24 carious pieces, 95%CI -0.72 to 0.23; I2 = 52%, low QoE) or Lactobacillus count (MD -0.78 CFU/mL, 95%CI -1.65 to 0.09; I2= 52%, very low QoE) vs. control. However, probiotics probably reduced S. mutans count vs. control (MD -0.40 CFU/mL, 95%CI -0.57 to -0.24; I2 = 11%, moderate QoE). Probiotics had no effect on bacterial plaque index (MD 0.21 units of bacterial plaque, 95%CI -0. 55-0.96; I2 = 80%, very low QoE), gingival index (MD 0.04 units of gingival index, 95%CI -0.18 to 0.27; I2= 0%, low QoE), and salivary pH (MD -0.12 pH units, 95%CI -0.72 to 0.48; I2 = 92%, very low QoE) vs. control. Probiotics were found to likely reduce S. mutans counts. However, no significant effect of probiotics was observed in reducing other outcomes compared to the control group.

8.
Front Cell Infect Microbiol ; 14: 1354736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045133

RESUMO

The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that ß-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.


Assuntos
Aeromonas hydrophila , Bacillus , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Aeromonas hydrophila/patogenicidade , Aeromonas hydrophila/crescimento & desenvolvimento , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Ração Animal , Probióticos/administração & dosagem , Glycine max/microbiologia , Aquicultura
9.
Sci Rep ; 14(1): 16760, 2024 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033245

RESUMO

Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.


Assuntos
Candida , Microbioma Gastrointestinal , Obesidade , Obesidade/microbiologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Probióticos/farmacologia , Candida albicans/efeitos dos fármacos , Modelos Biológicos , Antifúngicos/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38842655

RESUMO

Preclinical evidence suggests that probiotic administration may exert an anti-inflammatory effect and reduce autonomic dysfunction and blood pressure. This study evaluated the effects of probiotic therapy on inflammatory biomarkers and characterized the correlations between inflammation and cardiac autonomic function in women with arterial hypertension. Women were randomized into probiotics (n = 20) or placebo (n = 20). The probiotic group received 109 CFU/day of Lactobacillus (L.) paracasei LPC-37, L. rhamnosus HN001, L. acidophilus NCFM, and Bifidobacterium lactis HN019, and the placebo group received polydextrose. Clinical, electrocardiogram, heart rate variability (HRV) analysis, and cytokine levels were assessed at baseline and after 8 weeks. Women who received probiotics for 8 weeks had increased serum levels of IL-17A (p = 0.02) and decreased INF-γ (p = 0.02) compared to baseline. Probiotic supplementation increased serum levels of IL-10 compared to the placebo group (p = 0.03). Probiotic or placebo administration did not change serum levels of TNFα and IL-6. Serum levels of IL-2 (p = 0.001, and p = 0.001) and IL-4 (p = 0.001, and p = 0.001) were reduced in women receiving placebo or probiotics, respectively. Correlations between HRV indices and inflammatory variables showed that INF-γ was positively correlated with heart rate (HR) and sympathetic HRV indices and negatively correlated with vagal HRV indices. IL-10 was negatively correlated with HR and sympathetic HRV indices. IL-6 was negatively correlated with parasympathetic HRV indices and positively correlated with SD2/SD1 ratio. Probiotic therapy has a discreet anti-inflammatory effect in hypertensive women, and pro-inflammatory cytokines were negatively correlated with vagal modulation and positively correlated with sympathetic modulation of HRV. The clinical trial was registered in the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-9mj2dt.

12.
Biochem Pharmacol ; 226: 116363, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38871336

RESUMO

Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.


Assuntos
Países em Desenvolvimento , Microbioma Gastrointestinal , Helmintíase , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Helmintíase/imunologia , Helmintíase/prevenção & controle , Humanos , Animais , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos
13.
Microorganisms ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930439

RESUMO

Periodontitis is a destructive inflammatory response triggered by dysbiosis. Lactobacillus acidophilus LA5 (LA5) may impair microbial colonization and alter the host. Thus, we evaluated the effect of LA5 on alveolar bone loss in a periodontitis murine model and investigated its effect on the oral and gut microbiomes. Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Streptococcus gordonii were inoculated in C57BL/6 mice (P+), with LA5 (L+). SHAM infected controls (P- and/or L- groups) were also evaluated. After 45 days, alveolar bone loss in the maxilla and oral and gut microbiomes were determined. The administration of LA5 controlled the microbial consortium-induced alveolar bone loss. Periodontopathogens infection resulted in shifts in the oral and gut microbiomes consistent with dysbiosis, and LA5 reshaped these changes. The oral microbiome of P+L- group showed the increased abundance of Enterococaccea, Streptoccocaceae, Staphylococcaceae, Moraxellaceae, and Pseudomonadaceae, which were attenuated by the administration of LA5 to the infected group (P+L+). The administration of LA5 to otherwise non-infected mice resulted in the increased abundance of the superphylum Patescibacteria and the family Saccharamonadaceae in the gut. These data indicate L. acidophilus LA5 as a candidate probiotic for the control of periodontitis.

14.
Microorganisms ; 12(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38930451

RESUMO

The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.

15.
Insects ; 15(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921144

RESUMO

Bees are one of the best-known and, at the same time, perhaps the most enigmatic insects on our planet, known for their organization and social structure, being essential for the pollination of agricultural crops and several other plants, playing an essential role in food production and the balance of ecosystems, being associated with the production of high-value-added inputs, and a unique universe in relation to bees' microbiota. In this review, we summarize information regarding on different varieties of bees, with emphasis on their specificity related to microbial variations. Noteworthy are fructophilic bacteria, a lesser-known bacterial group, which use fructose fermentation as their main source of energy, with some strains being closely related to bees' health status. The beneficial properties of fructophilic bacteria may be extendable to humans and other animals as probiotics. In addition, their biotechnological potential may ease the development of new-generation antimicrobials with applications in biopreservation. The concept of "One Health" brings together fundamental and applied research with the aim of clarifying that the connections between the different components of ecosystems must be considered part of a mega-structure, with bees being an iconic example in that the healthy functionality of their microbiota is directly and indirectly related to agricultural production, bee health, quality of bee products, and the functional prosperity for humans and other animals. In fact, good health of bees is clearly related to the stable functionality of ecosystems and indirectly relates to humans' wellbeing, a concept of the "One Health".

16.
Artigo em Inglês | MEDLINE | ID: mdl-38829565

RESUMO

In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.

17.
Foods ; 13(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38890984

RESUMO

The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus rhamnosus and dried at 45 °C using RWTM and CD and FD. Total polyphenol content (TPC), color (∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 °C. Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of 6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage. Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC retention comparable to FD.

18.
Healthcare (Basel) ; 12(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891198

RESUMO

BACKGROUND: To compare photodynamic therapy and the use of probiotics in reducing halitosis assessed through gas chromatography and microbiome analysis. METHODS: Participants aged from 18 to 25 years showing sulfide (SH2) ≥ 112 ppb on gas chromatography were selected. They were divided into four treatment groups: Group 1-Tongue Scraping; Group 2-Antimicrobial Photodynamic Therapy (aPDT); Group 3-Probiotics; and Group 4-Antimicrobial Photodynamic Therapy (aPDT) and Probiotics. The halimetry process was performed before, immediately after the treatments, and 7 days, 14 days, and 30 days after the initial collection. The collections for later microbiological analysis were made along with the halimetry for microbiome analysis. RESULTS: Treatment with aPDT or probiotics under these experimental conditions was not able to change the bacteria present in the biofilm of the tongue. CONCLUSIONS: More research is needed to know the behavior of the oral microbiome in the presence of halitosis and the effectiveness of new treatments.

19.
Nutrients ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931319

RESUMO

Irritable bowel syndrome (IBS) and vitamin D deficiency are common among children in Latin America. Previous studies show that Bifidobacterium longum35624TM improves IBS symptoms in adults. This real-world, single-arm, open-label study conducted in Chile investigated the effects of B. longum 35624 (1 × 109 colony-forming units, 12 weeks) on gastrointestinal symptoms (adapted IBS severity scoring system [IBS-SSS]; adapted Questionnaire on Pediatric Gastrointestinal Symptoms [QPGS], and Bristol Stool Form Scale) in 64 children and adolescents (8-18 years) and explored the relationship with baseline vitamin D status. Improvements in all IBS-SSS domains and composite score were observed at week 6 and 12 (p < 0.0007 versus baseline), with 98.3% of participants experiencing numerical improvements in ≥3 domains. Clinically meaningful improvement was seen in 96.6% of participants. The distribution of IBS-SSS severity categories shifted from moderate/severe at baseline to mild/remission (p < 0.0001). Improvements were not maintained during the two-week washout. Low baseline serum vitamin D levels did not correlate to IBS severity or probiotic response. QPGS significantly decreased from baseline to week 6 (p = 0.0005) and 12 (p = 0.02). B. longum 35624 may improve IBS symptoms in children and adolescents, even those with vitamin D deficiency. A confirmatory randomized controlled trial and further exploration of probiotic response and vitamin D status are needed.


Assuntos
Bifidobacterium longum , Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/microbiologia , Adolescente , Criança , Probióticos/uso terapêutico , Masculino , Feminino , Chile , Resultado do Tratamento , Índice de Gravidade de Doença , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/tratamento farmacológico
20.
Eur J Med Res ; 29(1): 328, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877601

RESUMO

OBJECTIVES: The use of probiotics could promote the balance of the subgingival microbiota to contribute to periodontal health. This study aimed to identify the potential of bacteria commonly associated with healthy periodontal tissues as probiotic candidates. MATERIAL AND METHODS: A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed, Scopus, Science Direct, ProQuest, and Ovid databases as well as the combination of Medical Subject Headings (MeSH) and non-MeSH terms. Based on the selection criteria, original studies published in English and identifying the microorganisms present in the periodontium of healthy individuals and patients with periodontitis using the high-throughput 16S ribosomal gene sequencing technique were included. RESULTS: Out of 659 articles, 12 met the criteria for this review. These articles were published from 2012 to 2020 and mainly originated from the United States, China, and Spain. Most of these studies reported adequate criteria for selecting participants, using standardized clinical criteria, and compliance with quality based on the tools used. In periodontal healthy tissue were identified species like Actinomyces viscosus, Actinomyces naeslundii, Haemophilus parainfluenzae, Rothia dentocariosa, Streptococcus sanguinis, Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus intermedius, and Prevotella nigrescens which have recognized strains with a capacity to inhibit periodontopathogens. CONCLUSIONS: S. sanguinis, S. oralis, S. mitis, and S. gordonii are among the bacterial species proposed as potential probiotics because some strains can inhibit periodontopathogens and have been reported as safe for humans.


Assuntos
Periodonto , Probióticos , Humanos , Probióticos/uso terapêutico , Periodonto/microbiologia , Periodontite/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA