Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Geoderma ; 362: 114103, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32184497

RESUMO

The soil water retention curve is one of the most important properties used to predict the amount of water available to plants, pore size distribution and hydraulic conductivity, as well as knowledge for drainage and irrigation modeling. Depending on the method of measurement adopted, the water retention curve can involve the application of several wetting and drying (W-D) cycles to a soil sample. The method assumes soil pore structure is constant throughout however most of the time soil structure is dynamic and subjected to change when submitted to continuous W-D. Consequently, the pore size distribution, as well as other soil morphological properties can be affected. With this in mind, high resolution X-ray Computed micro-Tomography was utilized to evaluate changes in the soil pore architecture following W-D cycles during the procedure of the water retention curve evaluation. Two different soil sample volumes were analyzed: ROIW (whole sample) and ROIHC (the region close to the bottom of the sample). The second region was selected due to its proximity to the hydraulic contact of the soil with the water retention curve measurement apparatus. Samples were submitted to the following W-D treatments: 0, 6 and 12 W-D. Results indicated the soil changed its porous architecture after W-D cycles. The image-derived porosity did not show differences after W-D cycles for ROIW; while for ROIHC it increased porosity. The porosity was also lower in ROIHC in comparison to ROIW. Pore connectivity improved after W-D cycles for ROIHC, but not for ROIW. W-D cycles induced more aligned pores for both ROIs as observed by the tortuosity results. Pore shape showed changes mainly for ROIW for the equant and triaxial shaped pores; while pore size was significantly influenced by the W-D cycles. Soil water retention curve measurements showed that W-D cycles can affect water retention evaluation and that the changes in the soil morphological properties can play an important role in it.

2.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901877

RESUMO

Clay-based materials are the most traditional components of buildings. To improve their performance in a sustainable way, agents can be mixed to fired clay acting as a pore-forming factor. However, firing temperatures highly influence their microstructure which is closely linked to a material's final performance as a ceramic block. To highlight the influence of the firing temperature on microstructure, and more specifically on the pore size distribution of clay-based materials, three innovative porous materials were manufactured. These materials were produced by mixing clay and pore-forming agents. They were characterized by optical and scanning electronic microscopy, x-ray diffraction, mercury intrusion and nitrogen adsorption. These techniques allow the phase identification of materials, show sample microstructure and quantify the pore size distribution at different scales. Furthermore, geometric parameters of sample microstructure such as grain diameter and roundness are estimated by using computer software. To conclude, results provide an enlightenment about the influence of material microstructure on the pore size distribution at two firing temperatures. These results can be useful to allow the tune of porous characteristics and, therefore, contribute to the production of more sustainable construction materials.

3.
Sci. agric. ; 75(1): 60-69, Jan.-Feb.2018. ilus, mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17439

RESUMO

The Mantiqueira Range region is one of the most important headwaters in southeastern Brazil. In this context, the relationship between pedology and hydrology has been debated and analyzed in recent years, contributing to the creation of a multidisciplinary science call hydropedology. Therefore, the aim of this study was to evaluate the hydropedological properties of a mountainous Clayey Humic Dystrudept in the Mantiqueira Range region, in the state of Minas Gerais, Brazil, comparing two land-uses, native forest and pasture. The hydraulic conductivity results demonstrated that native forest (MFO) has a strong influence on this parameter, offering conditions for movement of water in the soil that are more adequate in this profile than in pasture. These results were supported by pore size distribution analyses which showed that soil from native forest has a greater amount of macropores than soil from pasture as well as greater connectivity between the macropores. In general, the MFO site had greater S index values than the micro-catchment taken from pasture, offering favorable physical conditions for the formation of preferential flowpaths in the soil profile and, therefore, better conditions for groundwater recharge. Soil erosion and water quality results confirmed the importance of native forest areas in the interaction between interception of the direct impact of intense precipitation on the soil surface, and hydropedological attributes, such as saturated hydraulic conductivity and porosity.(AU)


Assuntos
Condições do Solo , Recursos Hídricos , Erosão do Solo
4.
Sci. agric ; 75(1): 60-69, Jan.-Feb.2018. ilus, map, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497683

RESUMO

The Mantiqueira Range region is one of the most important headwaters in southeastern Brazil. In this context, the relationship between pedology and hydrology has been debated and analyzed in recent years, contributing to the creation of a multidisciplinary science call hydropedology. Therefore, the aim of this study was to evaluate the hydropedological properties of a mountainous Clayey Humic Dystrudept in the Mantiqueira Range region, in the state of Minas Gerais, Brazil, comparing two land-uses, native forest and pasture. The hydraulic conductivity results demonstrated that native forest (MFO) has a strong influence on this parameter, offering conditions for movement of water in the soil that are more adequate in this profile than in pasture. These results were supported by pore size distribution analyses which showed that soil from native forest has a greater amount of macropores than soil from pasture as well as greater connectivity between the macropores. In general, the MFO site had greater S index values than the micro-catchment taken from pasture, offering favorable physical conditions for the formation of preferential flowpaths in the soil profile and, therefore, better conditions for groundwater recharge. Soil erosion and water quality results confirmed the importance of native forest areas in the interaction between interception of the direct impact of intense precipitation on the soil surface, and hydropedological attributes, such as saturated hydraulic conductivity and porosity.


Assuntos
Condições do Solo , Erosão do Solo
5.
J Magn Reson ; 286: 82-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197695

RESUMO

Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T2-T2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme.

6.
Sci. agric ; 53(2)1996.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1495551

RESUMO

Fractal scaling has been applied to soils, both for void and solid phases, as an approach to characterize the porous arrangement, attempting to relate particle-size distribution to soil water retention and soil water dynamic properties. One important point of such an analysis is the assumption that the void space geometry of soils reflects its solid phase geometry, taking into account that soil pores are lined by the full range of particles, and that their fractal dimension, which expresses their tortuosity, could be evaluated by the fractal scaling of particle-size distribution. Other authors already concluded that although fractal scaling plays an important role in soil water retention and porosity, particle-size distribution alone is not sufficient to evaluate the fractal structure of porosity. It is also recommended to examine the relationship between fractal properties of solids and of voids, and in some special cases, look for an equivalence of both fractal dimensions. In the present paper data of 42 soil samples were analyzed in order to compare fractal dimensions of pore-size distribution, evaluated by soil water retention curves (SWRC) of soils, with fractal dimensions of soil particle-size distributions (PSD), taking the hydraulic conductivity as a standard variable for the comparison, due to its relation to tortuosity. A new procedure is proposed to evaluate the fractal dimension of pore-size distribution. Results indicate a better correlation between fractal dimensions of pore-size distribution and the hydraulic conductivity for this set of soils, showing that for most of the soils analyzed there is no equivalence of both fractal dimensions. For most of these soils the fractal dimension of particle-size distribution does not indicate properly the pore trace tortuosity. A better equivalence of both fractal dimensions was found for sandy soils.


O escalonamento fractal tem sido aplicado a solos, levando-se em conta tanto a sua distribuição de partículas como a distribuição de poros, na tentativa de se caracterizar o espaço poroso no que diz respeito às suas propriedades de retenção e condução de água. Um ponto importante nessas análises é a consideração de que a geometria do espaço poroso dos solos é o reflexo da geometria do espaço ocupado pelas partículas sólidas e que, portanto, a dimensão fractal da distribuição de poros do solo pode ser avaliada através da dimensão fractal da sua distribuição de partículas. Alguns autores, no entanto, reconhecem que a distribuição de partículas por si só não é suficiente para uma perfeita caracterização da geometria fractal do espaço poroso de um solo e que tal possibilidade é válida apenas para alguns casos especiais nos quais há uma correspondência entre ambas as dimensões fractais. No presente trabalho foram analisadas 42 amostras de solos de composições granulométricas distintas com o objetivo de avaliar a equivalência das dimensões fractais de suas distribuições de partículas às de suas distribuições de poros, tomando-se a condutividade hidráulica dos solos como uma propriedade indicadora da dimensão fractal da distribuição de poros, uma vez que tal propriedade, assim como a dimensão fractal, deve refletir diretamente a tortuosidade dos poros do solo. Os resultados indicam uma melhor correlação entre as dimensões fractais das distribuições de poros com as condutividades hidráulicas do que as dimensões fractais avaliadas pelas distribuições de partículas e que, para a maioria dos solos analisados, a distribuição de partículas não é um bom indicador para

7.
Sci. agric. ; 53(2)1996.
Artigo em Inglês | VETINDEX | ID: vti-439017

RESUMO

Fractal scaling has been applied to soils, both for void and solid phases, as an approach to characterize the porous arrangement, attempting to relate particle-size distribution to soil water retention and soil water dynamic properties. One important point of such an analysis is the assumption that the void space geometry of soils reflects its solid phase geometry, taking into account that soil pores are lined by the full range of particles, and that their fractal dimension, which expresses their tortuosity, could be evaluated by the fractal scaling of particle-size distribution. Other authors already concluded that although fractal scaling plays an important role in soil water retention and porosity, particle-size distribution alone is not sufficient to evaluate the fractal structure of porosity. It is also recommended to examine the relationship between fractal properties of solids and of voids, and in some special cases, look for an equivalence of both fractal dimensions. In the present paper data of 42 soil samples were analyzed in order to compare fractal dimensions of pore-size distribution, evaluated by soil water retention curves (SWRC) of soils, with fractal dimensions of soil particle-size distributions (PSD), taking the hydraulic conductivity as a standard variable for the comparison, due to its relation to tortuosity. A new procedure is proposed to evaluate the fractal dimension of pore-size distribution. Results indicate a better correlation between fractal dimensions of pore-size distribution and the hydraulic conductivity for this set of soils, showing that for most of the soils analyzed there is no equivalence of both fractal dimensions. For most of these soils the fractal dimension of particle-size distribution does not indicate properly the pore trace tortuosity. A better equivalence of both fractal dimensions was found for sandy soils.


O escalonamento fractal tem sido aplicado a solos, levando-se em conta tanto a sua distribuição de partículas como a distribuição de poros, na tentativa de se caracterizar o espaço poroso no que diz respeito às suas propriedades de retenção e condução de água. Um ponto importante nessas análises é a consideração de que a geometria do espaço poroso dos solos é o reflexo da geometria do espaço ocupado pelas partículas sólidas e que, portanto, a dimensão fractal da distribuição de poros do solo pode ser avaliada através da dimensão fractal da sua distribuição de partículas. Alguns autores, no entanto, reconhecem que a distribuição de partículas por si só não é suficiente para uma perfeita caracterização da geometria fractal do espaço poroso de um solo e que tal possibilidade é válida apenas para alguns casos especiais nos quais há uma correspondência entre ambas as dimensões fractais. No presente trabalho foram analisadas 42 amostras de solos de composições granulométricas distintas com o objetivo de avaliar a equivalência das dimensões fractais de suas distribuições de partículas às de suas distribuições de poros, tomando-se a condutividade hidráulica dos solos como uma propriedade indicadora da dimensão fractal da distribuição de poros, uma vez que tal propriedade, assim como a dimensão fractal, deve refletir diretamente a tortuosidade dos poros do solo. Os resultados indicam uma melhor correlação entre as dimensões fractais das distribuições de poros com as condutividades hidráulicas do que as dimensões fractais avaliadas pelas distribuições de partículas e que, para a maioria dos solos analisados, a distribuição de partículas não é um bom indicador para

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA