Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 525(13): 2861-2875, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512739

RESUMO

It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1-/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1-/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.


Assuntos
Axônios/metabolismo , Benzamidas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Locomoção/fisiologia , Medula Espinal/citologia , Medula Espinal/embriologia , Tirosina/análogos & derivados , Animais , Axônios/ultraestrutura , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Genótipo , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Desempenho Psicomotor/fisiologia , Teste de Desempenho do Rota-Rod , Tirosina/genética , Tirosina/metabolismo
2.
Exp Neurol ; 283(Pt A): 165-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27296316

RESUMO

UNLABELLED: Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. SIGNIFICANCE STATEMENT: Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss.


Assuntos
Actinas/metabolismo , Axônios/fisiologia , Endocitose/fisiologia , Galectina 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Galectina 1/genética , Galectina 1/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/fisiologia , Ratos , Semaforina-3A/farmacologia , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA