Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Bot ; 74(6): 2016-2028, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575905

RESUMO

Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants. Time-course experiments from the beginning of the interaction between T. atroviride and maize roots followed by leaf infection with Colletotrichum graminicola allowed us to identify a gene set regulated by priming in the leaf tissue. In the same experiment, phytohormone measurements revealed a decrease in jasmonic acid concentration while salicylic acid increased at 2 d and 6 d post-inoculation. In addition, chromatin structure and modification assays showed that chromatin was more open in the primed state compared with unprimed control conditions, and this allowed for quicker gene activation in response to pathogen attack. Overall, the results allowed us to gain insights on the interplay between the phytohormones and epigenetic regulatory events in the systemic and long-lasting regulation of maize plant defenses following Trichoderma inoculation.


Assuntos
Trichoderma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo
2.
Pestic Biochem Physiol ; 184: 105129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715067

RESUMO

Callosobruchus maculatus is the main pest cowpea (Vigna unguiculata). Given its relevance as an insect pest, studies have focused in finding toxic compounds which could prevent its predatory action towards the seeds. Clitoria fairchildiana is a native Amazon species, whose seeds are refractory to insect predation. This characteristic was the basis of our interest in evaluating the toxicity of its seed proteins to C. maculatus larvae. Seed proteins were fractioned, according to their solubility, to albumins (F1), globulins (F2), kaphyrins (F3), glutelins (F4), linked kaphyrins (F5) and cross-linked glutelins (F6). The fractionated proteins were quantified, analysed by tricine-SDS-PAGE and inserted into the diet of this insect pest in order to evaluate their insecticidal potential. The most toxic fraction to C. maculatus, the propanol soluble F3, was submitted to molecular exclusion chromatography and all of the peaks obtained, F3P1, F3P2, F3P3, caused a reduction of larval mass, especially F3P1, seen as a major ~12 kDa electrophoretic band. This protein was identified as a vicilin-like protein by mass spectrometry and BLAST analysis. The alignment of the Cfvic (C. fairchildiana vicilin) peptides with a V. unguiculata vicilin sequence, revealed that Cfvic has at least five peptides (ALLTLVNPDGR, AILTLVNPDGR, NFLAGGKDNV, ISDINSAMDR, NFLAGEK) which lined up with two chitin binding sites (ChBS). This finding was corroborated by chitin affinity chromatography and molecular docking of chitin-binding domains for N-Acetyl-D-glucosamine and by the reduction of Cfvic chitin affinity after chemical modification of its Lys residues. In conclusion, Cfvic is a 12 kDa vicilin-like protein, highly toxic to C. maculatus, acting as an insect toxin through its ability to bind to chitin structures present in the insect midgut.


Assuntos
Clitoria , Besouros , Animais , Quitina/metabolismo , Clitoria/metabolismo , Besouros/metabolismo , Cotilédone/metabolismo , Glutens/análise , Glutens/metabolismo , Larva/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Armazenamento de Sementes , Sementes/química
3.
Pest Manag Sci ; 78(8): 3314-3323, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35485909

RESUMO

BACKGROUND: Plant defenses activated by European zoophytophagous predators trigger behavioral responses in arthropods, benefiting pest management. However, repellence or attraction of pests and beneficial insects seems to be species-specific. In the neotropical region, the mirid predator Macrolophus basicornis has proved to be a promising biological control agent of important tomato pests; nevertheless, the benefits of its phytophagous behavior have never been explored. Therefore, we investigated if M. basicornis phytophagy activates tomato plant defenses and the consequences for herbivores and natural enemies. RESULTS: Regardless of the induction period of M. basicornis on tomato plants, Tuta absoluta females showed no preference for the odors emitted by induced or control plants. However, Tuta absoluta oviposited less on plants induced by M. basicornis for 72 h than on control plants. In contrast, induced plants repelled Bemisia tabaci females, and the number of eggs laid was reduced. Although females of Trichogramma pretiosum showed no preference between mirid-induced or control plants, we observed high attraction of the parasitoid Encarsia inaron and conspecifics to plants induced by M. basicornis. While the mirid-induced plants down-regulated the expression of genes involving the salicylic acid (SA) pathway over time, the genes related to the jasmonic acid (JA) pathway were up-regulated, increasing emissions of fatty-acid derivatives and terpenes, which might have influenced the arthropods' host/prey choices. CONCLUSION: Based on both the molecular and behavioral findings, our results indicated that in addition to predation, M. basicornis benefits tomato plant resistance indirectly through its phytophagy. This study is a starting point to pave the way for a novel and sustainable pest-management strategy in the neotropical region. © 2022 Society of Chemical Industry.


Assuntos
Heterópteros , Lepidópteros , Solanum lycopersicum , Animais , Feminino , Herbivoria , Heterópteros/fisiologia , Solanum lycopersicum/metabolismo , Controle Biológico de Vetores , Comportamento Predatório
4.
Phytopathology ; 112(4): 862-871, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34622696

RESUMO

With the progressive loss of fungicide efficacy against Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), alternative methods to protect soybean crops are needed. Resistance induction is a low impact alternative and/or supplement to fungicide applications that fortifies innate plant defenses against pathogens. Here, we show that a microbial fermentation product (MFP) induces plant defenses in soybean, and transcriptional induction is enhanced with the introduction of ASR. MFP-treated plants exhibited 1,011 and 1,877 differentially expressed genes (DEGs) 12 and 60 h after treatment, respectively, compared with water controls. MFP plants exposed to the pathogen 48 h after application and sampled 12 h later (for a total of 60 h) had 2,401 DEGs compared with control. The plant defense genes PR1, PR2, IPER, PAL, and CHS were induced with MFP application, and induction was enhanced with ASR. Enriched pathways associated with pathogen defense included plant-pathogen interactions, MAPK signaling pathways, phenylpropanoid biosynthesis, glutathione metabolism, flavonoid metabolism, and isoflavonoid metabolism. In field conditions, elevated antioxidant peroxidase activities and phenolic accumulation were measured with MFP treatment; however, improved ASR control or enhanced crop yield were not observed. MFP elicitation differences between field and laboratory grown plants necessitates further testing to identify best practices for effective disease management with MFP-treated soybean.


Assuntos
Glycine max , Phakopsora pachyrhizi , Fermentação , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Glycine max/genética
5.
Plants (Basel) ; 10(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073325

RESUMO

Mineral nutrients are essential for plant growth and reproduction, yet only a few studies connect the nutritional status to plant innate immunity. The backbone of plant defense response is mainly controlled by two major hormones: salicylic acid (SA) and jasmonic acid (JA). This study investigated changes in the macronutrient concentration (deficiency/excess of nitrogen, phosphorus, potassium, magnesium, and sulfur) on the expression of PR1, a well-characterized marker in the SA-pathway, and PDF1.2 and LOX2 for the JA-pathway, analyzing plants carrying the promoter of each gene fused to GUS as a reporter. After histochemical GUS assays, we determined that PR1 gene was strongly activated in response to sulfur (S) deficiency. Using RT-PCR, we observed that the induction of PR1 depended on the function of Non-expressor of Pathogenesis-Related gene 1 (NPR1) and SA accumulation, as PR1 was not expressed in npr1-1 mutant and NahG plants under S-deprived conditions. Plants treated with different S-concentrations showed that total S-deprivation was required to induce SA-mediated defense responses. Additionally, bioassays revealed that S-deprived plants, induced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv. DC3000 and increase susceptibility to the necrotrophic Botrytis cinerea. In conclusion, we observed a relationship between S and SA/JA-dependent defense mechanisms in Arabidopsis.

6.
Bull Entomol Res ; 108(4): 479-486, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29061199

RESUMO

We tested the sulfur-modulated plant resistance hypothesis using potted cabbage (Brassica oleracea var. capitata) plants that were grown without and with increasing levels of sulfur fertilization. Changes in plant chemical traits were assessed and developmental performance of Plutella xylostella, a highly host-specific leaf-chewing insect, was followed. Leaf sulfur concentration gradually increased with growing addition of sulfur in soil; however, there was a generalized saturation response curve, with a plateau phase, for improvements in total leaf nitrogen, defense glucosinolates and insect performance. Plutella xylostella performed better in sulfur-fertilized cabbage probably because of the higher level of nitrogen, despite of the higher content of glucosinolates, which are toxic for many non-specialized insects. Despite the importance of sulfur in plant nutrition and production, especially for Brassica crops, our results showed that sulfur fertilization could decrease plant resistance against insects with high feeding specialization.


Assuntos
Brassica/parasitologia , Fertilizantes , Mariposas , Nitrogênio/metabolismo , Enxofre/farmacologia , Animais , Brassica/química , Brassica/efeitos dos fármacos , Brassica/metabolismo , Herbivoria/efeitos dos fármacos , Mariposas/fisiologia , Nitrogênio/análise
7.
Front Plant Sci ; 8: 366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360923

RESUMO

Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.

8.
Rev. biol. trop ; Rev. biol. trop;64(2): 507-520, abr.-jun. 2016. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-843294

RESUMO

AbstractPlants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution. Rev. Biol. Trop. 64 (2): 507-520. Epub 2016 June 01.


ResumenLas plantas tienen recursos limitados para invertir en reproducción, crecimiento vegetativo y defensa contra herbívoros. El cambio en la distribución de recursos promueve variaciones en rasgos vegetales, que pueden afectar los niveles tróficos superiores. Durante dos años consecutivos de alta y baja inversión reproductiva se evaluó el cambio de recursos entre crecimiento vegetativo y defensa, y su efecto indirecto sobre la herbivoría en Copaifera langsdorffii. Nos preguntamos: i) ¿La inversión de recursos para la reproducción causa reducción del crecimiento vegetativo, como predice la hipótesis de equilibrio carbono/nutrientes, haciendo posible gastar más recursos en defensa? ii) ¿La variación en distribución de recursos para crecimiento y defensa entre años de alta y baja fructificación modifica indirectamente la herbivoría? Se monitorearon treinta y cinco árboles durante 2008 (gran fructificación) y 2009 (sin fructificación) en un área de vegetación de cerrado (Brasil), para evaluar la inversión diferencial en rasgos vegetativos (biomasa, crecimiento y No. de ramificaciones), defensa (concentración de taninos e hipersensibilidad vegetal) y herbivoría. De acuerdo a nuestra primera pregunta, se observó que en el año de fructificación la biomasa leñosa afectó negativamente la concentración de taninos, indicando que la producción de frutos redujo los recursos que podían invertirse en crecimiento y defensa. Además, la resistencia de las plantas y el ataque de agallas fueron influidos positivamente por la concentración de taninos y la biomasa foliar, lo que sugiere que la resistencia de los árboles a la herbivoría es un buen indicador de defensa vegetal y una estrategia efectiva de defensa de C. langsdorffii, además hay evidencia de respuesta trófica indirecta, como se postula en la segunda pregunta. En resumen, el patrón de fructificación supra-anual provoca varios efectos en el desarrollo de las plantas, mostrando la importancia de evaluar diversos rasgos vegetales al caracterizar la inversión de recursos de una especie. Como se esperaba, el cambio en la distribución de recursos modifica la producción de compuestos de defensa y los patrones de herbivoría. El entendimiento de este elemento importante de las interacciones insecto-planta será fundamental para descifrar la historia natural coevolutiva y las interacciones entre reproducción vegetal y ataque herbívoro. Además de eso, solo a través de estudios a largo plazo vamos a ser capaces de construir modelos y desarrollar pronósticos más precisos acerca de los factores que desencadenan el efecto de abajo hacia arriba en el rendimiento de la herbivoría, así el efecto de arriba hacia abajo de los herbívoros sobre la evolución de las plantas.


Assuntos
Animais , Adaptação Fisiológica/fisiologia , Herbivoria/fisiologia , Insetos/fisiologia , Fabaceae/fisiologia , Tumores de Planta , Herbivoria/classificação , Insetos/classificação , Fabaceae/crescimento & desenvolvimento , Fabaceae/parasitologia
9.
Ecol Evol ; 5(18): 4108-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26445662

RESUMO

Extrafloral nectar (EFN) mediates food-for-protection mutualisms between plants and insects and provides plants with a form of indirect defense against herbivory. Understanding sources of variation in EFN production is important because such variations affect the number and identity of insect visitors and the effectiveness of plant defense. Light represents a potentially crucial tool for regulating resource allocation to defense, as it not only contributes energy but may help plants to anticipate future conditions. Low red/far-red (R/FR) light ratios can act as a signal of the proximity of competing plants. Exposure to such light ratios has been shown to promote competitive behaviors that coincide with reduced resource allocation to direct chemical defenses. Little is known, however, about how such informational light signals might affect indirect defenses such as EFN, and the interactions that they mediate. Through controlled glasshouse experiments, we investigated the effects of light intensity, and R/FR light ratios, on EFN production in Senna mexicana var. chapmanii. Plants in light-limited conditions produced significantly less EFN, and leaf damage elicited increased EFN production regardless of light conditions. Ratios of R/FR light, however, did not appear to affect EFN production in either damaged or undamaged plants. Understanding the effects of light on indirect defenses is of particular importance for plants in the threatened pine rockland habitats of south Florida, where light conditions are changing in predictable ways following extensive fragmentation and subsequent mismanagement. Around 27% of species in these habitats produce EFN and may rely on insect communities for defense.

10.
Braz. j. biol ; Braz. j. biol;66(2)2006.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467850

RESUMO

Susceptibility of Didymopanax vinosum (Apiaceae) to insect herbivores was investigated in three sites of a cerrado mosaic - composed of campo cerrado (a grassland with scattered trees and shrubs), cerradão (a tall woodland) and cerrado sensu stricto (intermediate between the two) - situated in Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP, Brazil. We also examined the relationship of folivory with the composition and abundance of the insect herbivore fauna, and with several nutritional and defensive plant characteristics (water, nitrogen, cellulose, lignin, tannin leaf contents, and leaf toughness). We collected insects associated with D. vinosum every month, and we measured leaf damage every three months. In general, the annual folivory differed among sites. It reached the highest rates in site 1 and site 3: 7.33 and 8.5 percent, respectively. Only 1.32 percent of annual folivory was observed in site 2. These levels resulted from the higher abundance, in sites 1 and 3, of the thrips Liothrips didymopanacis (Phlaeothripidae), the most abundant herbivore sampled, responsible for more than 90 percent of the observed damage. However, no significant relationship was found between insect activity and the chemical and physical composition of the leaves. Our findings suggest that, at least in this species, other chemical compounds or variables related to plant apparency and resource availability to herbivores (e.g. plant architecture) might play a more decisive role in the spatial variation of folivory than the nutritional and defensive traits that were analyzed.


A susceptibilidade de Didymopanax vinosum (Apiaceae) a insetos herbívoros foi investigada em três localidades de um mosaico de cerrado - composto de campo cerrado, cerrado sensu stricto e cerradão - localizado no Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP, Brasil. Nosso objetivo foi também relacionar a folivoria com a composição e abundância da fauna de insetos herbívoros, e com várias características nutritivas e defensivas da planta (conteúdo foliar de água, nitrogênio, celulose, lignina, taninos e dureza foliar). Para tanto, coletamos mensalmente os insetos associados a D. vinosum e a cada três meses medimos as injúrias foliares. De modo geral, a herbivoria anual variou entre as localidades. Os maiores valores foram encontrados em plantas da localidade 1 e localidade 3: 7,33 e 8,5 por cento, aproximadamente, contra apenas 1,32 por cento na localidade 2. Esses níveis são resultado da maior abundância, nas localidades 1 e 3, do trips Liothrips didymopanacis (Phlaeothripidae), o principal herbívoro amostrado, responsável por mais de 90% das injúrias observadas. Entretanto, não se encontrou relação entre a atividade desses insetos e a composição química e física das folhas. Nossos resultados indicam que, ao menos para esta espécie, outros compostos químicos ou variáveis relacionadas à aparência e à disponibilidade de recursos aos herbívoros (por exemplo a arquitetura da planta), podem desempenhar um papel mais importante na variação espacial da folivoria que as características nutritivas e as defesas vegetais que foram analisadas.

11.
Braz. J. Biol. ; 66(2)2006.
Artigo em Inglês | VETINDEX | ID: vti-446142

RESUMO

Susceptibility of Didymopanax vinosum (Apiaceae) to insect herbivores was investigated in three sites of a cerrado mosaic - composed of campo cerrado (a grassland with scattered trees and shrubs), cerradão (a tall woodland) and cerrado sensu stricto (intermediate between the two) - situated in Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP, Brazil. We also examined the relationship of folivory with the composition and abundance of the insect herbivore fauna, and with several nutritional and defensive plant characteristics (water, nitrogen, cellulose, lignin, tannin leaf contents, and leaf toughness). We collected insects associated with D. vinosum every month, and we measured leaf damage every three months. In general, the annual folivory differed among sites. It reached the highest rates in site 1 and site 3: 7.33 and 8.5 percent, respectively. Only 1.32 percent of annual folivory was observed in site 2. These levels resulted from the higher abundance, in sites 1 and 3, of the thrips Liothrips didymopanacis (Phlaeothripidae), the most abundant herbivore sampled, responsible for more than 90 percent of the observed damage. However, no significant relationship was found between insect activity and the chemical and physical composition of the leaves. Our findings suggest that, at least in this species, other chemical compounds or variables related to plant apparency and resource availability to herbivores (e.g. plant architecture) might play a more decisive role in the spatial variation of folivory than the nutritional and defensive traits that were analyzed.


A susceptibilidade de Didymopanax vinosum (Apiaceae) a insetos herbívoros foi investigada em três localidades de um mosaico de cerrado - composto de campo cerrado, cerrado sensu stricto e cerradão - localizado no Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP, Brasil. Nosso objetivo foi também relacionar a folivoria com a composição e abundância da fauna de insetos herbívoros, e com várias características nutritivas e defensivas da planta (conteúdo foliar de água, nitrogênio, celulose, lignina, taninos e dureza foliar). Para tanto, coletamos mensalmente os insetos associados a D. vinosum e a cada três meses medimos as injúrias foliares. De modo geral, a herbivoria anual variou entre as localidades. Os maiores valores foram encontrados em plantas da localidade 1 e localidade 3: 7,33 e 8,5 por cento, aproximadamente, contra apenas 1,32 por cento na localidade 2. Esses níveis são resultado da maior abundância, nas localidades 1 e 3, do trips Liothrips didymopanacis (Phlaeothripidae), o principal herbívoro amostrado, responsável por mais de 90% das injúrias observadas. Entretanto, não se encontrou relação entre a atividade desses insetos e a composição química e física das folhas. Nossos resultados indicam que, ao menos para esta espécie, outros compostos químicos ou variáveis relacionadas à aparência e à disponibilidade de recursos aos herbívoros (por exemplo a arquitetura da planta), podem desempenhar um papel mais importante na variação espacial da folivoria que as características nutritivas e as defesas vegetais que foram analisadas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA