Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 235-244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150151

RESUMO

Cordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass. The initial optimization was done by the conventional single-factor approach, followed by Plackett-Burman design to screen the most significant variables, with yeast extract, temperature, and glucose being the most significant, contributing 11.58%, 49.74%, and 27.98%, respectively, in mycelial biomass production. These variables were then optimized using response surface methodology (RSM) based on central composite design (CCD). The study observed that temperature and glucose had the highest impact on mycelial biomass, with p-values of 0.0128 and 0.0191, respectively. Under the optimized conditions, temperature 20 °C, glucose 2.5% (w/v), and yeast extract 0.8% (w/v), the maximal yield of mycelial biomass reached 547 ± 2.09 mg/100 mL, which was 1.95-fold higher than the yield in the basal medium. These findings suggest that optimizing the cultural and nutritional conditions can enhance mycelial biomass production of Cordyceps militaris, offering a sustainable and cost-effective source of this valuable fungus.


Assuntos
Cordyceps , Nitrogênio , Carbono , Biomassa , Glucose
2.
Int J Biol Macromol ; 230: 123272, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649864

RESUMO

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.


Assuntos
Anacardium , Nanopartículas , Trypanosoma cruzi , Reprodutibilidade dos Testes , Nanopartículas/química , Liberação Controlada de Fármacos , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Portadores de Fármacos/farmacologia
3.
Food Technol Biotechnol ; 60(2): 192-201, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910278

RESUMO

Research background: Cocoa honey and cocoa pulp are both highly appreciated fruit pulp, but until now, cocoa honey has been less processed than cocoa pulp. In this work, we investigate the applicability of Saccharomyces cerevisiae strains to ferment cocoa honey complemented with cocoa pulp to obtain fruit wines and improve cocoa honey commercialization. Experimental approach: The strain, previously isolated from cachaçaria distilleries in Brazil, was selected based on its fermentation performance. The following conditions for fermentation with S. cerevisiae L63 were then studied: volume fraction of cocoa honey (φ CH) complemented with cocoa pulp, sucrose addition (γ suc), temperature (t) and inoculum size (N o). The best conditions were applied in order to obtain fermentation profiles. Results and conclusions: S. cerevisiae L63 (N o=107-108 cell/mL) is capable of fermenting φ CH=90 and 80% for 24 or 48 h with γ suc=50 and 100 g/L at t=28-30 °C resulting in wines with ethanol volume fractions from 8 to 14%. Additionally, the wine produced from φ CH=90% had lower residual sugar concentration (<35 g/L) than the wine produced from φ CH=80% (~79 g/L) which could be classified as a sweet wine. In general, S. cerevisiae L63 resulted in a similar fermentation performance as a commercial strain tested, indicating its potential for fruit pulp fermentation. Novelty and scientific contribution: Saccharomyces cerevisiae L63 can ferment cocoa honey complemented with cocoa pulp to produce fruit wines with good commercial potential, which may also benefit small cocoa producers by presenting a product with greater added value.

4.
Braz J Microbiol ; 53(2): 673-688, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122655

RESUMO

Cordyceps acid is an active component of Cordyceps cicadae and has a variety of medicinal uses, including anti-tumor effects, the prevention of cerebral hemorrhaging and myocardial infarction, and the inhibition of a wide range of bacteria. The objectives of this study were to identify C. cicadae fungi and optimize the culture conditions to obtain a high yield of cordycepic acid. First, a wild C. cicadae was identified by morphological observation and rDNA sequence analysis. Secondly, the optimal fermentation conditions were determined using a single-factor method, a Plackett-Burman design, and a Box-Behnken response surface. Finally, using the yield of fruit bodies and the content of cordyceps acid as indices, combined with a single-factor experiment and a response surface design, the best combination of conditions for cultivation was determined. The results showed that the best combination was as follows: sucrose 2%, tryptone 2%, KH2PO4 0.4%, MgSO4·7H2O 0.4%, an initial pH of the fermentation liquid of 7.0, 5% inoculum, fermentation for 4.5 d, a ratio of medium to liquid of 1:1.7, illumination intensity 150 Lux, illumination time 15 h per day, and 70% humidity. The content of cordycepic acid in the fruiting bodies developed in cultivation was 2.07-fold higher than that in the wild C. cicadae. This study provides a theoretical basis for the large-scale cultivation of C. cicadae with a high concentration of cordycepic acid.


Assuntos
Cordyceps , Bactérias , Cordyceps/genética , Meios de Cultura , Fermentação
5.
Int J Biol Macromol ; 190: 801-809, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508723

RESUMO

We developed a new hydrophobic polymer based on angico gum (AG), and we produced new nanoparticles to expand the applications of natural polysaccharides in nanomedicine. Phthalate angico gum (PAG) was characterized by 1H NMR, FTIR, elementary analysis, solubility, XRD, and TG. PAG was a hydrophobic and semi-crystalline material, a relevant characteristic for drug delivery system applications. As a proof of concept, nevirapine (NVP) was selected for nanoparticles development. Plackett-Burman's experimental design was used to understand the influence of several factors in nanoparticles production. PAG proved to be a versatile material for producing nanoparticles with different characteristics. Optimized nanoparticles were produced using desirability parameters. NVP-loaded PAG nanoparticles formulation showed 202.1 nm of particle size, 0.23 of PDI, -17.1 of zeta potential, 69.8 of encapsulation efficiency, and promoted modified drug release for 8 h. Here we show that PAG presents as a promising biopolymer for drug delivery systems.


Assuntos
Química Verde , Nanopartículas/química , Nanotecnologia , Ácidos Ftálicos/química , Gomas Vegetais/química , Liberação Controlada de Fármacos , Humanos , Microscopia de Força Atômica , Peso Molecular , Nevirapina/farmacologia , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
6.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452229

RESUMO

l-asparaginase is an enzyme used as treatment for acute lymphoblastic leukemia (ALL) due to its ability to hydrolyze l-asparagine, an essential amino acid synthesized by normal cells unlike neoplastic cells. The adverse effects of l-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of l-asparaginase-producing eukaryotic microorganisms with low glutaminase activity. This work evaluated the biotechnological potential of filamentous fungi isolated from Brazilian Savanna soil and plants for l-asparaginase production. Thirty-nine isolates were screened for enzyme production using the plate assay, followed by measuring enzymatic activity in cells after submerged fermentation. The variables influencing l-asparaginase production were evaluated using Plackett-Burman design. Cell disruption methods were evaluated for l-asparaginase release. Penicillium sizovae 2DSST1 and Fusarium proliferatum DCFS10 showed the highest l-asparaginase activity levels and the lowest glutaminase activity levels. Penicillium sizovae l-asparaginase was repressed by carbon sources, whereas higher carbon concentrations enhanced l-asparaginase by F. proliferatum. Maximum enzyme productivity, specific enzyme yield and the biomass conversion factor in the enzyme increased after Plackett-Burman design. Freeze-grinding released 5-fold more l-asparaginase from cells than sonication. This study shows two species, which have not yet been reported, as sources of l-asparaginase with possible reduced immunogenicity for ALL therapy.

7.
Eur J Pharm Biopharm ; 165: 127-148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33992754

RESUMO

Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Projetos de Pesquisa , Química Farmacêutica , Nanomedicina/métodos
8.
Microorganisms ; 9(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672878

RESUMO

The discovery of biopigments has received considerable attention from the industrial sector, mainly for potential applications as novel molecules with biological activity, in cosmetics or if aquaculture food supplements. The main objective of this study was to increase the production of carotenoid pigments in a naturally pigmented yeast by subjecting the yeast to various cellular stresses using design of experiments. The fungal strain Rhodotorula mucilaginosa AJB01 was isolated from a food sample collected in Barranquilla, Colombia, and one of the pigments produced was ß-carotene. This strain was subjected to various stress conditions, including osmotic stress using different salts, physical stress by ultraviolet (UV) light, and light stress using different photoperiods. The optimal growth conditions for carotenoid production were determined to be 1 min of UV light, 0.5 mg/L of magnesium sulfate, and an 18:6 h light/dark period, which resulted in a carotenoid yield of 118.3 µg of carotenoid per gram of yeast.

9.
J Chromatogr A ; 1633: 461606, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33128969

RESUMO

An accurate, sensitive and selective analytical method is proposed for sulfonamide residues analysis in infant formulas based on hydrophilic interaction liquid chromatography (HILIC) and quadrupole time-of-flight mass spectrometry in full scan mode. The sample preparation approach involves low-temperature lipid precipitation followed by dispersive solid-phase extraction with PSA and C18 sorbents, which was successfully optimized using Plackett-Burman design. In order to achieve high analytical sensitivity, the influence of HILIC conditions on sulfonamide ionization was investigated, such as the mobile phase composition, buffer concentration, and sample diluent for injection. The method performance characteristics, including linearity (range 5-120 µg kg-1), reliable limits of quantification (between 5 and 20 µg kg-1), recovery (72.9-109.2%) and precision (coefficient of variation values ≤ 19.8%) under repeatability and within-laboratory reproducibility conditions, were in accordance with the Codex Alimentarius Commission CAC/GL 71-2009 for quantitative analytical methods for veterinary drug residues in foods. Moreover, adequate identification of the compounds was provided with accurate mass measurement of both precursor and fragment ions in one single run. Finally, the developed method was applied to thirty-five powdered milk-based infant formula samples available in the Brazilian market.


Assuntos
Cromatografia Líquida , Resíduos de Drogas/análise , Análise de Alimentos/métodos , Fórmulas Infantis/química , Espectrometria de Massas , Sulfonamidas/análise , Brasil , Contaminação de Alimentos/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactente , Reprodutibilidade dos Testes , Extração em Fase Sólida
10.
Braz J Microbiol ; 51(3): 979-988, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32424715

RESUMO

L-asparaginase has been used in the remission of malignant neoplasms such as acute lymphoblastic leukemia. The search for new sources of this enzyme has become attractive for therapeutics. Traditional methods for biomolecule purification involve several steps. A two-phase system may be a good strategy to anticipate one of these stages. This study aimed to produce and purify a fungal L-asparaginase through an aqueous two-phase micellar system (ATPMS) using Triton X-114. The fungus Penicillium sp.-encoded 2DSST1 was isolated from Cerrado soil. Plackett-Burman design followed by a 24 full factorial design was used to determine the best conditions to produce L-asparaginase. The evaluated variables were L-asparagine, L-proline, wheat bran, potato dextrose broth, ammonium sulfate, yeast extract, sucrose and glucose concentrations, incubation temperature, incubation period, and initial pH of the culture medium. L-asparaginase quantification was valued by the formation of ß-aspartyl hydroxamate. The significant positive variables, L-asparagine, L-proline, potato dextrose broth, and sucrose concentrations, were evaluated at 2 levels (+ 1 and - 1) with triplicate of the central point. After 34 runs, maximum activity (2.33 IU/mL) was achieved at the factorial design central point. A central composite design was performed in ATPMS at two levels (+ 1 and - 1) varying Triton X-114 concentration (w/v), separation phase temperature, and crude extract concentration (w/v). The L-asparaginase partition coefficient (K) was considered the experimental design response. Out of the 16 systems that were examined, the most promising presented a purification factor of 1.4 and a yield of 100%.


Assuntos
Asparaginase/isolamento & purificação , Fibras na Dieta/metabolismo , Micelas , Penicillium/enzimologia , Asparaginase/metabolismo , Biodegradação Ambiental , Meios de Cultura/química , Meios de Cultura/metabolismo , Fibras na Dieta/análise , Fermentação , Extração Líquido-Líquido , Octoxinol/análise , Octoxinol/química , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Temperatura
11.
Rev. bras. farmacogn ; 29(3): 381-388, May-June 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1020582

RESUMO

ABSTRACT The value of propolis is scientifically and commercially measured through the content of biologically active molecules as phenolic compounds and flavonoids; on the other hand, a high percentage of waxes in the propolis composition makes it a substandard beekeeping product. Colombian propolis is characterized by a high content of waxes; however, this drawback turns into an advantage when this material is used for preparing lipid nanocarriers. Accordingly, in this research work, a propolis-extracted material obtained by Randall method is characterized by differential scanning calorimetry, infrared spectroscopy, X-ray diffraction, and 1H-Nuclear Magnetic Resonance. Then, it is used for obtaining nanostructured lipid carriers by the emulsification-diffusion technique, whose recipe and operating work conditions were established by a Plackett-Burman statistical screening design. The obtained particles exhibit sizes less than 300 nm, polydispersity indices around 0.1, zeta potential values less than ±2 mV, good physical stability and they show to be safe in the in vitro irritation test. Thus, Colombian propolis arises as an attractive natural source for obtaining lipid carriers that could be used in pharmaceutical or cosmetic industries for developing innovative products.

12.
Rev. argent. microbiol ; Rev. argent. microbiol;51(2): 170-178, jun. 2019.
Artigo em Inglês | LILACS | ID: biblio-1013369

RESUMO

Steroids, including testosterone, estrone, 17β-estradiol, estriol and 17β-ethinyl estradiol, are harmful not only to the population dynamics of aquatic life forms but also to public health. In this study, a marine testosterone-degrading bacterium (strain N3) was isolated from Nanao Island in the South China Sea. In addition, the strain could also use 17β-estradiol (E2), 17β-ethinyl estradiol (EE2), estriol (E3) or cholesterol as a sole carbon source. According to the 16S rRNA gene sequence analysis, strain N3 was identified as Vibrio sp. Further characterization showed that the strain is aerobic, gram-negative, and mobile and exhibits resistance to ampicillin, carbenicillin, penicillin and spectinomycin. For enhancing its capacity of testosterone degradation, the Plackett-Burman factorial design and the central composite design were used to optimize the culture condition. Under optimal conditions, 92% of testosterone was degraded by Vibrio sp. N3 in 48 h.


Los esferoides-que incluyen la testosterona, la estrona, el 17 β-estradiol, el estriol y el 17 p-etinilestradiol-son nocivos no solo para la población dinámica de las formas de vida acuática, sino también para la salud pública. En este estudio se aisló una bacteria marina degradadora de testosterona de la isla de Nanao, en el Mar del Sur de China, a la que se denominó cepa N3. Se determinó que esta cepa también podría usar 17 β-estradiol (E2), 17 p-etinilestradiol (EE2), estriol (E3) o colesterol como únicas fuentes de carbono. De acuerdo con el análisis de la secuencia del gen 16S rRNA, la cepa N3 se identificó como Vibrio sp. La caracterización adicional mostró que dicha bacteria es un organismo aerobio, gram negativo y móvil, y que presenta resistencia a ampicilina, carbenicilina, penicilina y espectinomicina. Para optimizar la condición de cultivo en relación con su capacidad de degradar la testosterona, se utilizaron el diseño factorial Plackett-Burman y el diseno compuesto central. En condiciones óptimas, el 92% de la testosterona fue degradada por Vibrio sp. N3 en 48 h.


Assuntos
Testosterona/antagonistas & inibidores , Vibrio/isolamento & purificação , Vibrio/genética , Ambiente Marinho/análise , Análise de Sequência/métodos
13.
Rev Argent Microbiol ; 51(2): 170-178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30297081

RESUMO

Steroids, including testosterone, estrone, 17ß-estradiol, estriol and 17ß-ethinyl estradiol, are harmful not only to the population dynamics of aquatic life forms but also to public health. In this study, a marine testosterone-degrading bacterium (strain N3) was isolated from Nanao Island in the South China Sea. In addition, the strain could also use 17ß-estradiol (E2), 17ß-ethinyl estradiol (EE2), estriol (E3) or cholesterol as a sole carbon source. According to the 16S rRNA gene sequence analysis, strain N3 was identified as Vibrio sp. Further characterization showed that the strain is aerobic, gram-negative, and mobile and exhibits resistance to ampicillin, carbenicillin, penicillin and spectinomycin. For enhancing its capacity of testosterone degradation, the Plackett-Burman factorial design and the central composite design were used to optimize the culture condition. Under optimal conditions, 92% of testosterone was degraded by Vibrio sp. N3 in 48h.


Assuntos
Testosterona/química , Vibrio/isolamento & purificação , Vibrio/fisiologia , Organismos Aquáticos , Biodegradação Ambiental , Vibrio/classificação
14.
Environ Technol ; 39(14): 1776-1785, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28592217

RESUMO

Community on-site separation of wastewater is a treatment approach that leads to more efficient processes. Black water has high organic matter content and can be a suitable feedstock for anaerobic treatment systems. Biological methane production (BMP) tests were conducted using Plackett-Burman design to screen the effects of adding Fe, Ni, Cu, Co, Mn, Ba and Se, with simulated black water (SBW) as the substrate. In the inoculum, most metals were found mainly in the organic matter/sulfide and residual fractions except for Mn, which was present at 12.3% in the bioavailable fractions (exchangeable and carbonates), and Ba, which was evenly distributed among all the fractions. Ba had a significant negative effect on methane production and Mn addition enhanced the toxic effect. A specific methanogenic activity (SMA) between 18% and 27% lower than the control, was predicted at a total Ba concentration of approximately 1000-1200 mg L-1. Similar SMA was predicted at Ba concentration between 400 and 600 mg L-1 when 0.55 mg L-1 of Mn is added. Se and Cu additions demonstrate the potential to improve the methane production from SBW. The SMA was predicted to reach 12 mLCH4 gCOD-1 d-1 when Cu and Se are supplied at total concentrations of 3.0 mg L-1 and 0.98 mg L-1, respectively.


Assuntos
Oligoelementos/análise , Águas Residuárias , Anaerobiose , Metais , Água , Purificação da Água
15.
Univ. sci ; 22(1): 45-70, Jan.-Apr. 2017. tab, graf
Artigo em Inglês | LILACS, COLNAL | ID: biblio-904705

RESUMO

Abstract Using Response Surface Methodology (RSM) we evaluated the culture conditions (nitrogen source, carbon source, pH and agitation rate) that increase the biomass of Acidocellafaalis strain USBA-GBX-505 and therefore enhance the production of its lipolytic enzyme, 505 LIP. RSM results revealed that yeast extract and agitation were key culture factors that increased the growth-associated lipolytic activity by 4.5-fold (from 0.13 U.mg-1 to 0.6 U.mg-1). The 505 LIP lipase was partially purified using size-exclusion chromatography and ion-exchange chromatography. Its molecular weight was >77 kDa. The enzyme shows its optimum catalytic activity at 55 °C and pH 7.5. EDTA, PMSF, 1-butanol and DMSO inhibited enzymatic activity, whereas Tween 20, acetone, glycerol and methanol increased it. Metallic ions are not required for the activity of 505 LIP, and even have an inhibitory effect on the enzyme. This study shows the potential use of A. facilis strain USBA- GBX-505 for the production of a newly identified lipolytic enzyme, 505 LIP, which is stable at moderate temperatures and in the presence of organic solvents. These are important characteristics for the synthesis of many useful products.


Resumen Por medio de la Metodología de Respuesta de Superficie (RSM) evaluamos las condiciones de cultivo (fuente de N, fuente de C, pH y tasa de agitación) que incrementan la biomasa de Acidocella facilis cepa USBA-GBX-505 y, como consecuencia, la producción de su enzima lipolítica, llamada 505 LIP. Los resultados de la RSM revelaron que el extracto de levadura y la agitación fueron factores de cultivo claves, que incrementaron de 4 a 5 veces la actividad lipolítica asociada al crecimiento (de 0.13 U.mg-1 a 0.6 U.mg-1). La lipasa 505 LIP se purificó parcialmente usando cromatografía de exclusión por tamaño y cromatografía de intercambio iónico. Su peso molecular fue > 77 kDa. La enzima muestra su actividad catalítica óptima a 55 °C y pH 7.5. El EDTA, el PMSF, el 1-butanol y el DMSO inhibieron la actividad enzimática, mientras que el Tween 20, la acetona, el glicerol y el metanol la incrementaron. La enzima 505 LIP no requiere iones metálicos para su actividad, e incluso se inhibe en presencia de ellos. Este estudio muestra el uso potencial de A. facilis cepa USBA-GBX-505 para la producción de una nueva enzima lipolítica, 505 LIP, que es estable a temperaturas moderadas y en la presencia de solventes orgánicos. Estas son características importantes en la síntesis de muchos productos útiles.


Resumo Utilizando a Metodologia de Superfície de Resposta (MSR) avaliamos as condições de cultivo (fontes de nitrogénio e carbono, pH e taxa de agitação) que aumentam a biomassa de Acidocella facilis cepa USBA-GBX-505, e, portanto, elevam a produção de sua enzima lipolítica 505 LIP. Os resultados da MSR revelaram que o extrato de levedura e a agitação foram fatores de cultivo chave que permitiram aumentar 4 a 5 vezes a atividade lipolítica associada ao crescimento (de 0,13 U.mg-1 a 0,6 U.mg-1). A lipase 505 LIP foi parcialmente purificada utilizando cromatografia por exclusão de tamanho e cromatografia de intercambio iónico. Seu peso molecular foi > 77 kDa. A enzima mostra sua atividade catalítica ótima a 55 °C e pH 7,5. EDTA, PMSF, 1-butanol e DMSO inibiram a atividade enzimática, enquanto que Tween 20, acetona, glicerol e metanol aumentaram esta atividade. Íons metálicos não são necessários para a atividade da 505 LIP, apresentando inclusive efeito inibitório da enzima. Este estudo demonstra o potencial uso de A. facilis cepa USBA-GBX-505 para a produção de uma nova enzima lipolítica, 505 LIP, a qual é estável a moderadas temperaturas e na presença de solventes orgánicos. Estas características são importantes para a síntese de diversos produtos úteis.


Assuntos
Cromatografia por Troca Iônica/métodos
16.
Braz. j. microbiol ; Braz. j. microbiol;47(4): 941-948, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828200

RESUMO

Abstract In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.


Assuntos
Proteínas de Soja , Meios de Cultura , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Biomassa , Ácido Láctico/biossíntese , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Reatores Biológicos , Meios de Cultura/química , Metabolismo dos Carboidratos , Fermentação , Hidrólise
17.
Braz. J. Microbiol. ; 47(4): 941-948, Out-Dez. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-23308

RESUMO

In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.(AU)


Assuntos
Lactobacillus plantarum/química , Lactobacillus plantarum/crescimento & desenvolvimento , Proteínas de Soja/síntese química , Proteínas de Soja/metabolismo , Biomassa
18.
Braz J Microbiol ; 47(4): 941-948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27522926

RESUMO

In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL-1, corresponding to a productivity of 1.46gL-1h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.


Assuntos
Meios de Cultura , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Proteínas de Soja , Biomassa , Reatores Biológicos , Metabolismo dos Carboidratos , Meios de Cultura/química , Fermentação , Hidrólise , Ácido Láctico/biossíntese , Proteínas de Soja/química , Proteínas de Soja/metabolismo
19.
Electron. j. biotechnol ; Electron. j. biotechnol;19(4): 1-8, July 2016. ilus
Artigo em Inglês | LILACS | ID: lil-793946

RESUMO

Background: The alga Laminaria japonica is the most economically important brown seaweed cultured in China, which is used as food and aquatic animal feedstuff. However, the use of L. japonica as a feedstuff in Apostichopus japonicasfarming is not ideal because A. japonicas does not produce enough enzyme activity for degrading the large amount of algin present in L. japonica. In this study, semi solid fermentation of the L. japonica feedstuff employing a Bacillus strain as the microbe was used to as a mean to degrade the algin content in L. japonica feedstuff. Results: The Bacillus strain, Bacillus amyloliquefaciens WB1, was isolated by virtue of its ability to utilize sodium alginate as the sole carbon source. Eight factors affecting growth and algin-degrading capacity of WB1 were investigated. The results of Plackett-Burman design indicated that fermentation time, beef extract, and solvent to solid ratio were the significant parameters. Furthermore, the mutual interaction between the solvent to solid ratio and beef extract concentration was more significant than the other pairs of parameters on algin degradation. Optimal values obtained from Central-Composite Design were 113.94 h for fermentation time, 0.3% (w/v) beef extract and 44.87 (v/w) ratio of solvent to feedstuff. Under optimal conditions, 56.88% of the algin was degraded when a 50-fold scale-up fermentation was carried out, using a 5-L fermenter. Conclusions: This study provides an alternative and economical way to reduce the algin content in L. japonicathrough degradation by WB1, making it a promising potential source of feed for cultured L japonica.


Assuntos
Stichopus , Bacillus amyloliquefaciens/metabolismo , Laminaria , Ração Animal , Pepinos-do-Mar , Microscopia Eletrônica de Varredura , Fermentação , Bacillus amyloliquefaciens/química
20.
Food Technol Biotechnol ; 54(4): 489-496, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28115908

RESUMO

Search for naturally grown food has stimulated the biotechnological production of carotenoids. Therefore, the use of the yeast Xanthophyllomonas dendrorhous has been researched due to its abilities to assimilate different sources as substrates and to produce high amounts of carotenoids. Furthermore, alternative sources have been used as the culture medium to reduce costs and environmental impact. A potent carotenoid is astaxanthin in view of its health-promoting and antioxidative properties. It consists of different geometrical isomers with trans and cis configuration. In X. dendrorhous this carotenoid is mostly found in the trans form, but cis isomers can also be found. Carotenoid production was investigated in culture medium containing by-products such as raw glycerol (from biodiesel) and parboiled rice effluent. The effects of the culture medium components on biomass concentration and specific and volumetric productions of carotenoids were verified by the Plackett-Burman design. Cultivations were carried out with yeast Xanthophyllomonas dendrorhous NRRL Y-17268 at 25 °C and 150 rpm for 168 h. In this study, maximum production of carotenoids was obtained under the following conditions (in g/L): raw glycerol 10, glucose 10, yeast extract 10, malt extract 10 and peptone 1 at pH=6. Resulting specific and volumetric productions of carotenoids were 326.8 and 4.1 µg/g, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA