Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 673216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177855

RESUMO

Piscirickettsia salmonis is a bacterial pathogen that severely impact the aquaculture in several countries as Canada, Scotland, Ireland, Norway, and Chile. It provokes Piscirickettsiosis outbreaks in the marine phase of salmonid farming, resulting in economic losses. The monophyletic genogroup LF-89 and a divergent genogroup EM-90 are responsible for the most severe Piscirickettsiosis outbreaks in Chile. Therefore, the development of methods for quick genotyping of P. salmonis genogroups in field samples is vital for veterinary diagnoses and understanding the population structure of this pathogen. The present study reports the development of a multiplex PCR for genotyping LF-89 and EM-90 genogroups based on comparative genomics of 73 fully sequenced P. salmonis genomes. The results revealed 2,322 sequences shared between 35 LF-89 genomes, 2,280 sequences in the core-genome of 38 EM-90 genomes, and 331 and 534 accessory coding sequences each genogroup, respectively. A total of 1,801 clusters of coding sequences were shared among all tested genomes of P. salmonis (LF-89 and EM-90), with 253 and 291 unique sequences for LF-89 and EM-90 genogroups, respectively. The Multiplex-1 prototype was chosen for reliable genotyping because of differences in annealing temperatures and respective reaction efficiencies. This method also identified the pathogen in field samples infected with LF-89 or EM-90 strains, which is not possible with other methods currently available. Finally, the genome-based multiplex PCR protocol presented in this study is a rapid and affordable alternative to classical sequencing of PCR products and analyzing the length of restriction fragment polymorphisms.

2.
J Mass Spectrom ; 51(3): 200-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26956387

RESUMO

Piscirickettsia salmonis is a pathogenic bacteria known as the aetiological agent of the salmonid rickettsial syndrome and causes a high mortality in farmed salmonid fishes. Detection of P. salmonis in farmed fishes is based mainly on molecular biology and immunohistochemistry techniques. These techniques are in most of the cases expensive and time consuming. In the search of new alternatives to detect the presence of P. salmonis in salmonid fishes, this work proposed the use of MALDI-TOF-MS to compare serum protein profiles from Salmo salar fish, including experimentally infected and non-infected fishes using principal component analysis (PCA). Samples were obtained from a controlled bioassay where S. salar was challenged with P. salmonis in a cohabitation model and classified according to the presence or absence of the bacteria by real time PCR analysis. MALDI spectra of the fish serum samples showed differences in its serum protein composition. These differences were corroborated with PCA analysis. The results demonstrated that the use of both MALDI-TOF-MS and PCA represents a useful tool to discriminate the fish status through the analysis of salmonid serum samples.


Assuntos
Proteínas de Bactérias/sangue , Piscirickettsia/isolamento & purificação , Infecções por Piscirickettsiaceae , Salmo salar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Infecções por Piscirickettsiaceae/sangue , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA