Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 246: 125611, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406918

RESUMO

The objective of this work was to modify banana starch with pineapple leaf fibers (PALF) and its production of biodegradable films. The reaction conditions of the starch modification were a Starch/PALF mass ratio of 50, a time of 1 h and a temperature of 140 °C, to obtain a yield of 41.18 %. Characterization by FTIR and NMR confirmed that the chemical reaction was carried out. XRD and TGA analysis showed that the crystalline zones of the starch were affected during the modification and the product obtained is thermally less stable compared to unmodified starch. The modified starch showed a lower pasting profile compared to the native starch; however, the modified starch showed the ability to form a film. The starch-PALF films were obtained by the casting method and partially characterized. These films presented better mechanical properties compared to the unmodified films. Also, these films could compete with conventional non-biodegradable plastics.


Assuntos
Ananas , Amido , Amido/química , Solubilidade , Permeabilidade
2.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015506

RESUMO

Replacing synthetic fibers with natural ones as reinforcement in polymeric composites is an alternative to contribute to sustainability. Pineapple leaf fibers (PALF) have specific mechanical properties that allow their use as reinforcement. Further, graphene oxide (GO) has aroused interest due to its distinctive properties that allow the improvement of fiber/matrix interfacial adhesion. Thus, this work aimed to evaluate the ballistic performance and energy absorption properties of PALF-reinforced composites, presenting different conditions (i.e., GO-functionalization, and variation of fibers volume fraction and arrangement) through residual velocity and Izod impact tests. ANOVA was used to verify the variability and reliability of the results. SEM was employed to visualize the failure mechanisms. The Izod impact results revealed a significant increase in the absorbed energy with the increment of fiber volume fraction for the unidirectional configuration. The ballistic results indicated that the bidirectional arrangement was responsible for better physical integrity after the projectile impact. Furthermore, bidirectional samples containing 30 vol.% of GO non-functionalized fibers in a GO-reinforced matrix showed the best results, indicating its possible application as a second layer in multilayered armor systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA