Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Insect Sci ; 1: 100014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36003598

RESUMO

Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.

2.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041485

RESUMO

Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.


Assuntos
Astacoidea/fisiologia , Ritmo Circadiano , Melatonina/metabolismo , Animais , Astacoidea/metabolismo , Comportamento Animal
3.
Artigo em Inglês | MEDLINE | ID: mdl-27783925

RESUMO

In this work, we studied the characteristics of recovery from desensitization of the light-elicited current of crayfish. Applying a two-flash protocol, we found that the first flash triggers a current that activates with a noticeable latency, reaches a peak value, and thereafter decays along a single exponential time course. In comparison with the first-elicited current, the current elicited by the second flash not only presents an expected smaller peak current, depending on the time between flashes, but it also displays a different latency and decay time constant. Recovery of the first flash values of these current parameters depends on the circadian time at which the experiments are conducted, and on the presence of pigment-dispersing hormone. Our data also suggest the existence of distinctive desensitized states, whose induction depends on circadian time and the presence of pigment-dispersing hormone.


Assuntos
Astacoidea/fisiologia , Ritmo Circadiano , Hormônios de Invertebrado/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Algoritmos , Animais , Aquicultura , Astacoidea/crescimento & desenvolvimento , Fenômenos Eletrofisiológicos , Olho , Técnicas In Vitro/veterinária , Cinética , Muda , Tempo de Reação
4.
Neuroscience ; 247: 280-93, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23727010

RESUMO

Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Plasticidade Neuronal/fisiologia , Fotoperíodo , Animais , Humanos , Atividade Motora/fisiologia , Rede Nervosa/metabolismo , Proteínas Circadianas Period/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA