Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(7): 683-696, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861073

RESUMO

Silver nanoparticles (AgNPs) are among the most produced nanomaterials in the world and are incorporated into several products due to their biocide and physicochemical properties. Since freshwater bodies are AgNPs main final sink, several consequences for biota are expected to occur. With the hypothesis that AgNPs can interact with environmental factors, we analyzed their ecotoxicity in combination with humic acids and algae. In addition to the specific AgNPs behavior in the media, we analyzed the mortality, growth, and phototactic behavior of Chydorus eurynotus (Cladocera) as response variables. While algae promoted Ag+ release, humic acids reduced it by adsorption, and their combination resulted in an intermediated Ag+ release. AgNPs affected C. eurynotus survival and growth, but algae and humic acids reduced AgNPs lethality, especially when combined. The humic acids mitigated AgNP effects in C. eurynotus growth, and both factors improved its phototactic behavior. It is essential to deepen the study of the isolated and combined influences of environmental factors on the ecotoxicity of nanoparticles to achieve accurate predictions under realistic exposure scenarios.


Assuntos
Cladocera , Substâncias Húmicas , Nanopartículas Metálicas , Prata , Poluentes Químicos da Água , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Cladocera/efeitos dos fármacos , Cladocera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA