Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Photosynth Res ; 144(3): 327-339, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291595

RESUMO

The initial stimulation of photosynthesis under elevated CO2 concentrations (eCO2) is often followed by a decline in photosynthesis, known as CO2 acclimation. Changes in N levels under eCO2 can have different effects in plants fertilized with nitrate (NO3-) or ammonium (NH4+) as the N source. NO3- assimilation consumes approximately 25% of the energy produced by an expanded leaf, whereas NH4+ requires less energy to be incorporated into organic compounds. Although plant-N interactions are important for the productivity and nutritional value of food crops worldwide, most studies have not compared the performance of plants supplied with different forms of N. Therefore, this study aims to go beyond treating N as the total N in the soil or the plant because the specific N compounds formed from the available N forms become highly engaged in all aspects of plant metabolism. To this end, plant N metabolism was analyzed through an experiment with eCO2 and fertigation with NO3- and/or NH4+ as N sources for tobacco (Nicotiana tabacum) plants. The results showed that the plants that received only NO3- as a source of N grew more slowly when exposed to a CO2 concentration of 760 µmol mol-1 than when they were exposed to ambient CO2 conditions. On the other hand, in plants fertigated with only NH4+, eCO2 enhanced photosynthesis. This was essential for the maintenance of the metabolic pathways responsible for N assimilation and distribution in growing tissues. These data show that the physiological performance of tobacco plants exposed to eCO2 depends on the form of inorganic N that is absorbed and assimilated.


Assuntos
Dióxido de Carbono/metabolismo , Nicotiana/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Solo/química , Nicotiana/crescimento & desenvolvimento
2.
J Exp Bot ; 67(1): 341-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26503540

RESUMO

Coffee (Coffea spp.), a globally traded commodity, is a slow-growing tropical tree species that displays an improved photosynthetic performance when grown under elevated atmospheric CO2 concentrations ([CO2]). To investigate the mechanisms underlying this response, two commercial coffee cultivars (Catuaí and Obatã) were grown using the first free-air CO2 enrichment (FACE) facility in Latin America. Measurements were conducted in two contrasting growth seasons, which were characterized by the high (February) and low (August) sink demand. Elevated [CO2] led to increases in net photosynthetic rates (A) in parallel with decreased photorespiration rates, with no photochemical limitations to A. The stimulation of A by elevated CO2 supply was more prominent in August (56% on average) than in February (40% on average). Overall, the stomatal and mesophyll conductances, as well as the leaf nitrogen and phosphorus concentrations, were unresponsive to the treatments. Photosynthesis was strongly limited by diffusional constraints, particularly at the stomata level, and this pattern was little, if at all, affected by elevated [CO2]. Relative to February, starch pools (but not soluble sugars) increased remarkably (>500%) in August, with no detectable alteration in the maximum carboxylation capacity estimated on a chloroplast [CO2] basis. Upregulation of A by elevated [CO2] took place with no signs of photosynthetic downregulation, even during the period of low sink demand, when acclimation would be expected to be greatest.


Assuntos
Dióxido de Carbono/análise , Coffea/fisiologia , Fotossíntese , Coffea/química , Coffea/genética , Coffea/crescimento & desenvolvimento , Regulação para Baixo , Células do Mesofilo/fisiologia , Modelos Biológicos , Processos Fotoquímicos , Estômatos de Plantas/fisiologia , Estações do Ano
3.
Rev. biol. trop ; Rev. biol. trop;61(4): 1859-1868, oct.-dic. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-703933

RESUMO

The neotropical liana Gnetum leyboldii Gnetaceae is a gymnosperm that resembles angiosperms in wood anatomy, overall morphology, and seed dispersal mechanism. Like other woody lianas, seedlings germinate in the shaded forest understory and start climbing towards the canopy, being eposed to sites with etreme differences in light conditions. However, the etent of physiological and structural adjustment to contrasting light conditions in the early regeneration stages of Gnetum is unknown. To answer this question, we analyzed seedling growth and photosynthetic responses using a common garden eperiment with two light regimes: full sun and low light 20 of full sun at La Selva Biological Station, Costa Rica. We also characterized the germination pattern of this species. We monitored one and half-month old seedlings for four months. Leaf structure finely adapted to light treatments, but gas echange properties were buffered by large seed reserves, which dominated biomass distribution about 50 of the total biomass, followed by stem 27, leaf 16 and root biomass 6 across light conditions. The presence of large seeds and the low photosynthetic rates of seedlings in both environments show that G. leyboldii is specialized to eploit deep shade. More research is needed to determine if the patterns found in G. leyboldii are typical of similar lianas that initially eploit deep-shaded understories in their ascension to the canopy.


La liana neotropical Gnetum leyboldii Gnetaceae es una gimnosperma que se asemeja a las angiospermas en la anatomía de la madera, morfología general de la planta y mecanismo de dispersión de semillas. Al igual que otras lianas leñosas, las plántulas se regeneran en el sotobosque bajo dosel cerrado y eventualmente ascienden hacia el dosel, eplotando sitios con diferencias etremas en condiciones lumínicas. Se desconoce el grado de ajuste fisiológico a condiciones lumínicas contrastantes en las primeras fases de regeneración de Gnetum. Para contestar esta pregunta, analizamos las respuestas de crecimiento de las plántulas a ambientes contrastantes de luz de sol y sombra en un jardín común con condiciones de alta cielo abierto y baja luminosidad 20 del ambiente de sol en la Estación Biológica La Selva, Costa Rica. También caracterizamos su patrón de germinación. Monitoreamos plántulas de 1.5 meses de edad por 4 meses. La estructura foliar mostró una fina adaptación a los tratamientos de luz, pero las propiedades de intercambio gaseoso no cambiaron sino que fueron amortiguadas por las reservas de las semillas grandes, las cuales dominaron la distribución de biomasa aproimadamente 50 de la biomasa total seguidas por el tallo 27, la hoja 16 y raíces 6. El tener semillas grandes y plántulas con bajas tasas fotosintéticas muestra que G. leyboldii en su etapa de plántula está adaptado para eplotar la sombra profunda. Se requiere más investigación para determinar si los patrones encontrados en G. leyboldii son típicos de otras lianas que inicialmente eplotan la sombra profunda en su ascensión al dosel.


Assuntos
Aclimatação/fisiologia , Gnetum/fisiologia , Fotossíntese/fisiologia , Chuva , Luz Solar , Plântula/fisiologia , Biomassa , Costa Rica , Gnetum/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Árvores , Clima Tropical
4.
Oecologia ; 70(4): 514-519, 1986 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28311492

RESUMO

To assess the role of photosynthetic acclimation in the response of tropical understory herbs to treefall light gaps, photosynthetic response curves were determined for three species of herbaceous bamboo growing in treatments of sun and shade at Barro Calorado Island, Panama. Increased maximum photosynthetic capacity did not always accompany higher ramet production in the sun treatment. Pharus latifolius reproduced abundantly in both treatments, and produced more ramets and developed higher maximum photosynthetic capacity under higher irradiance. Streptochaeta spicata also produced a high percentage of reproductive ramets in both treatments and produced more ramets in the sun, did not show any significant differences in photosynthetic parameters between treatments. Streptochaeta sodiroana did not change maximum photosynthetic capacity in the sun, and had higher photosynthetic efficiency and lower mortality in the shade. Stable carbon isotope composition of leaves indicated that all three species developed higher water-use efficiency under higher irradiance. Photosynthetic flexibility may contribute to the ability of P. latifolius to reproduce in treefall gaps, whereas S. spicata and S. sodiroana may maintain the ability to fix carbon efficiently in low irradiance even when growing or persisting in gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA