Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119816, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39159686

RESUMO

Exposure to the non-protein amino acid cyanotoxin ß-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.


Assuntos
Diamino Aminoácidos , Toxinas de Cianobactérias , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Receptores X de Retinoides , Diamino Aminoácidos/farmacologia , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores X de Retinoides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Neurônios Retinianos/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Morte Celular/efeitos dos fármacos
2.
Zoology (Jena) ; 162: 126147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277721

RESUMO

Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.


Assuntos
Columbidae , Opsinas , Masculino , Animais , Opsinas/genética , Opsinas/metabolismo , Hipotálamo/metabolismo , Encéfalo , Gônadas/metabolismo , Estações do Ano
3.
Math Biosci ; 366: 109104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918478

RESUMO

In this work, we introduce a phenomenological model for the cone-horizontal cell assembly, including spatial integration and formation of receptive field-like structures. The model extends our previous dynamical adaptation description with gain control accounting for processes in single cones, valid in severe nonlinear regimes. Here, a spatially extended feedback mechanism is introduced from horizontal cells to cones to account for experimental evidence, contributing thus to the development of a center-surround receptive field in cones and downstream bipolar cells. Feedback gain is defined on different spatial scales by weighting spatial filters: a short scale accounting for cone input to the feedback mechanism and a large scale driven by the syncytium characteristics of horizontal cells. A third spatial scale improves the description, mimicking neighboring cone-cone coupling. This overall spatial integration couples to temporal signal processing, thus obtaining a spatiotemporal model of outer retina responses capable of reproducing nonlinear features in both dimensions (space and time). The model was tested and validated using measurements on horizontal cells from different studies, with excellent performance. By its phenomenological nature, signal processing properties are inferred from model parameters. The model can be used in arrays of processing units with more complex incoming patterns of visual stimuli.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Cones/fisiologia , Retroalimentação
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834188

RESUMO

Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.


Assuntos
Bactérias , Proteínas Luminescentes/metabolismo , Bactérias/metabolismo
5.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175628

RESUMO

Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retina/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Glucose/metabolismo , Diabetes Mellitus/metabolismo
6.
Photochem Photobiol Sci ; 22(8): 1901-1918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209300

RESUMO

Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.


Assuntos
Citrus , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Citrus/metabolismo , Citrus/microbiologia , Virulência , Luz , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo
7.
Planta ; 257(4): 67, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843173

RESUMO

MAIN CONCLUSION: Blue light exposure delays tomato seed germination by decreasing endosperm-degrading hydrolase activities, a process regulated by CRY1a-dependent signaling and the hormonal balance between ABA and GA. The germination of tomato seeds (Solanum lycopersicum L.) is tightly controlled by an internal hormonal balance, which is also influenced by environmental factors such as light. In this study, we investigated the blue light (BL)-mediated impacts on physiological, biochemical, and molecular processes during the germination of the blue light photoreceptor CRYPTOCHROME 1a loss-of-function mutant (cry1a) and of the hormonal tomato mutants notabilis (not, deficient in ABA) and procera (pro, displaying a GA-constitutive response). Seeds were germinated in a controlled chamber in the dark and under different intensities of continuous BL (ranging from 1 to 25 µmol m-2 s-1). In general, exposure to BL delayed tomato seed germination in a fluency rate-dependent way due to negative impacts on the activities of endosperm-degrading hydrolases, such as endo-ß-mannanase, ß-mannosidase, and α-galactosidase. However, not and pro mutants presented higher germination speed index (GSI) compared to WT despite the BL influence, associated with higher hydrolase activities, especially evident in pro, indicating that the ABA/GA hormonal balance is important to diminish BL inhibition over tomato germination. The cry1a germination percentage was higher than in WT in the dark but its GSI was lower under BL exposure, suggesting that functional CRY1a is required for BL-dependent germination. BL inhibits the expression of GA-biosynthetic genes, and induces GA-deactivating and ABA-biosynthetic genes. The magnitude of the BL influence over the hormone-related transcriptional profile is also dependent upon CRY1a, highlighting the complex interplay between light and hormonal pathways. These results contribute to a better understanding of BL-induced events behind the photoregulation of tomato seed germination.


Assuntos
Endosperma , Solanum lycopersicum , Endosperma/genética , Endosperma/metabolismo , Solanum lycopersicum/genética , Germinação , Sementes/fisiologia , Criptocromos/genética , Criptocromos/metabolismo , beta-Manosidase/genética , beta-Manosidase/metabolismo , Percepção , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Microb Ecol ; 86(2): 914-932, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36161499

RESUMO

Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin-Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood-Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.


Assuntos
Altitude , Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Fotossíntese , Luz , Lagos/microbiologia
9.
Phys Biol ; 19(6)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36220008

RESUMO

The retina hosts all processes needed to convert external visual stimuli into a neural code. Light phototransduction and its conversion into an electrical signal involve biochemical cascades, ionic regulations, and different kinds of coupling, among other relevant processes. These create a nonlinear processing scheme and light-dependent adaptive responses. The dynamical adaptation model formulated in recent years is an excellent phenomenological candidate to resume all these phenomena into a single feedforward processing scheme. In this work, we analyze this description in highly nonlinear conditions and find that responses do not match those resulting from a very detailed microscopic model, developed to reproduce electrophysiological recordings on horizontal cells. When a delayed light-dependent gain factor incorporates into the description, responses are in excellent agreement, even when spanning several orders of magnitude in light intensity, contrast, and duration, for simple and complex stimuli. This extended model may be instrumental for studies of the retinal function, enabling the linking of the microscopic domain to the understanding of signal processing properties, and further incorporated in spatially extended retinal networks.


Assuntos
Luz , Retina , Retina/fisiologia , Adaptação Fisiológica/fisiologia , Neurônios
10.
Trends Plant Sci ; 27(12): 1266-1282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057533

RESUMO

A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plântula , Regulação da Expressão Gênica de Plantas/genética
11.
J Fungi (Basel) ; 8(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35628742

RESUMO

Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein-protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1PAS∆) or BcWCL2 (BcWCL2PAS∆) severely impairs the interaction between these proteins. Interestingly, the BcWCL1PAS∆ protein shows a blue-light response and interacts with BcWCL2 or BcWCL2PAS∆ upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1PAS∆ respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein-protein interactions occurring between the core elements of the B. cinerea circadian clock.

12.
Front Microbiol ; 12: 724676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566928

RESUMO

Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.

13.
Biochim Biophys Acta Mol Cell Res ; 1868(11): 119098, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271041

RESUMO

Photoreceptor cell (PHR) death is a hallmark of most retinal neurodegenerative diseases, in which inflammation plays a critical role. Activation of retinoid X receptors (RXR) modulates and integrates multiple cell functions, and has beneficial effects in animal models of chronic inflammatory diseases. Nonetheless, the mechanisms involved and their role in retina neuroprotection are poorly understood. In this work we assessed whether RXR activation prevents inflammation and/or PHR death in retinitis pigmentosa, an inherited retina neurodegeneration, using as an ex vivo model, retinas from the rd1 mice, a murine model of this disease. We demonstrated that rd1 retinas had lower levels of RXR alpha isoform than their wt counterparts at early developmental times, whereas its distribution pattern remained similar. In mixed neuro-glial cultures obtained from either rd1 or wt retinas, both PHR and Müller glial cells (MGC) expressed RXRalpha, and RXR activation by its synthetic pan-agonist PA024 selectively increased mRNA levels of RXRgamma isoform. PA024 decreased PHR death in rd1 mixed cultures; it reduced the amount of non-viable neurons, delayed the onset of PHR apoptosis, and decreased Bax mRNA levels. PA024 also reduced MGC reactivity in vitro before and at the onset of degeneration, decreasing GFAP expression, increasing glutamine synthetase mRNA levels, and promoting the transcription of the anti-inflammatory cytokine, Il-10. These results suggest that RXR activation rescues rd1 PHR and decreases MGC reactivity, promoting an anti-inflammatory environment in the rd1 retina, thus supporting the potential of RXR agonists as pharmacological tools for treating retina degenerative diseases.


Assuntos
Modelos Animais de Doenças , Inflamação/metabolismo , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Front Mol Neurosci ; 14: 624265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958989

RESUMO

The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Cav1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva.

15.
Neurobiol Dis ; 152: 105288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556541

RESUMO

The mdx52 mouse model of Duchenne muscular dystrophy (DMD) is lacking exon 52 of the DMD gene that is located in a hotspot mutation region causing cognitive deficits and retinal anomalies in DMD patients. This deletion leads to the loss of the dystrophin proteins, Dp427, Dp260 and Dp140, while Dp71 is preserved. The flash electroretinogram (ERG) in mdx52 mice was previously characterized by delayed dark-adapted b-waves. A detailed description of functional ERG changes and visual performances in mdx52 mice is, however, lacking. Here an extensive full-field ERG repertoire was applied in mdx52 mice and WT littermates to analyze retinal physiology in scotopic, mesopic and photopic conditions in response to flash, sawtooth and/or sinusoidal stimuli. Behavioral contrast sensitivity was assessed using quantitative optomotor response (OMR) to sinusoidally modulated luminance gratings at 100% or 50% contrast. The mdx52 mice exhibited reduced amplitudes and delayed implicit times in dark-adapted ERG flash responses, particularly in their b-wave and oscillatory potentials, and diminished amplitudes of light-adapted flash ERGs. ERG responses to sawtooth stimuli were also diminished and delayed for both mesopic and photopic conditions in mdx52 mice and the first harmonic amplitudes to photopic sine-wave stimuli were smaller at all temporal frequencies. OMR indices were comparable between genotypes at 100% contrast but significantly reduced in mdx52 mice at 50% contrast. The complex ERG alterations and disturbed contrast vision in mdx52 mice include features observed in DMD patients and suggest altered photoreceptor-to-bipolar cell transmission possibly affecting contrast sensitivity. The mdx52 mouse is a relevant model to appraise the roles of retinal dystrophins and for preclinical studies related to DMD.


Assuntos
Distrofia Muscular de Duchenne/fisiopatologia , Percepção Visual/fisiologia , Animais , Eletrorretinografia , Camundongos , Camundongos Endogâmicos mdx , Transmissão Sináptica/fisiologia
16.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530294

RESUMO

Light is an important cue that stimulates both plastid development and biosynthesis of carotenoids in plants. During photomorphogenesis or de-etiolation, photoreceptors are activated and molecular factors for carotenoid and chlorophyll biosynthesis are induced thereof. In fruits, light is absorbed by chloroplasts in the early stages of ripening, which allows a gradual synthesis of carotenoids in the peel and pulp with the onset of chromoplasts' development. In roots, only a fraction of light reaches this tissue, which is not required for carotenoid synthesis, but it is essential for root development. When exposed to light, roots start greening due to chloroplast development. However, the colored taproot of carrot grown underground presents a high carotenoid accumulation together with chromoplast development, similar to citrus fruits during ripening. Interestingly, total carotenoid levels decrease in carrots roots when illuminated and develop chloroplasts, similar to normal roots exposed to light. The recent findings of the effect of light quality upon the induction of molecular factors involved in carotenoid synthesis in leaves, fruit, and roots are discussed, aiming to propose consensus mechanisms in order to contribute to the understanding of carotenoid synthesis regulation by light in plants.


Assuntos
Vias Biossintéticas , Carotenoides/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plastídeos/genética , Cloroplastos , Frutas/genética , Frutas/metabolismo , Luz , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação
17.
Yeast ; 38(2): 131-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33119964

RESUMO

Optogenetics refers to the control of biological processes with light. The activation of cellular phenomena by defined wavelengths has several advantages compared with traditional chemically inducible systems, such as spatiotemporal resolution, dose-response regulation, low cost, and moderate toxic effects. Optogenetics has been successfully implemented in yeast, a remarkable biological platform that is not only a model organism for cellular and molecular biology studies, but also a microorganism with diverse biotechnological applications. In this review, we summarize the main optogenetic systems implemented in the budding yeast Saccharomyces cerevisiae, which allow orthogonal control (by light) of gene expression, protein subcellular localization, reconstitution of protein activity, and protein sequestration by oligomerization. Furthermore, we review the application of optogenetic systems in the control of metabolic pathways, heterologous protein production and flocculation. We then revise an example of a previously described yeast optogenetic switch, named FUN-LOV, which allows precise and strong activation of the target gene. Finally, we describe optogenetic systems that have not yet been implemented in yeast, which could therefore be used to expand the panel of available tools in this biological chassis. In conclusion, a wide repertoire of optogenetic systems can be used to address fundamental biological questions and broaden the biotechnological toolkit in yeast.


Assuntos
Expressão Gênica , Optogenética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biotecnologia/métodos , Engenharia Metabólica/métodos , Transporte Proteico , Saccharomyces cerevisiae/fisiologia
18.
Exp Eye Res ; 202: 108342, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144094

RESUMO

B-N-methylamino-L-alanine (BMAA), a cyanotoxin produced by most cyanobacteria, has been proposed to cause long term damages leading to neurodegenerative diseases, including Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) and retinal pathologies. Previous work has shown diverse mechanisms leading to BMAA-induced degeneration; however, the underlying mechanisms of toxicity affecting retina cells are not fully elucidated. We here show that BMAA treatment of rat retina neurons in vitro induced nuclear fragmentation and cell death in both photoreceptors (PHRs) and amacrine neurons, provoking mitochondrial membrane depolarization. Pretreatment with the N-Methyl-D-aspartate (NMDA) receptor antagonist MK-801 prevented BMAA-induced death of amacrine neurons, but not that of PHRs, implying activation of NMDA receptors participated only in amacrine cell death. Noteworthy, BMAA stimulated a selective axonal outgrowth in amacrine neurons, simultaneously promoting growth cone destabilization. BMAA partially decreased the viability of Müller glial cells (MGC), the main glial cell type in the retina, induced marked alterations in their actin cytoskeleton and impaired their capacity to protect retinal neurons. BMAA also induced cell death and promoted axonal outgrowth in differentiated rat pheochromocytoma (PC12) cells, implying these effects were not limited to amacrine neurons. These results suggest that BMAA is toxic for retina neurons and MGC and point to the involvement of NMDA receptors in amacrine cell death, providing new insight into the mechanisms involved in BMAA neurotoxic effects in the retina.


Assuntos
Diamino Aminoácidos/toxicidade , Células Ependimogliais/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Doenças Retinianas/induzido quimicamente , Neurônios Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Toxinas de Cianobactérias , Fragmentação do DNA/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Células Ependimogliais/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Doenças Retinianas/metabolismo , Doenças Retinianas/prevenção & controle , Neurônios Retinianos/patologia
19.
Transcription ; 11(3-4): 117-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32748694

RESUMO

Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.


Assuntos
Arabidopsis/genética , Cromatina/genética , Estágios do Ciclo de Vida/genética , Luz , RNA Polimerase II/genética , Transcrição Gênica/genética , Processamento Alternativo/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , RNA Polimerase II/metabolismo
20.
Plant Cell Environ ; 43(7): 1625-1636, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31925796

RESUMO

When exposed to neighbour cues, competitive plants increase stem growth to reduce the degree of current or future shade. The aim of this work is to investigate the impact of weather conditions on the magnitude of shade avoidance responses in Arabidopsis thaliana. We first generated a growth rate database under controlled conditions and elaborated a model that predicts daytime hypocotyl growth as a function of the activity of the main photosensory receptors (phytochromes A and B, cryptochromes 1 and 2) in combination with light and temperature inputs. We then incorporated the action of thermal amplitude to account for its effect on selected genotypes, which correlates with the dynamics of the growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR 4. The model predicted growth rate in the field with reasonable accuracy. Thus, we used the model in combination with a worldwide data set of current and future whether conditions. The analysis predicted enhanced shade avoidance responses as a result of higher temperatures due to the geographical location or global warming. Irradiance and thermal amplitude had no effects. These trends were also observed for our local growth rate measurements. We conclude that, if water and nutrients do not become limiting, warm environments enhance the shade avoidance response.


Assuntos
Arabidopsis/fisiologia , Fototropismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Luz , Modelos Biológicos , Fototropismo/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA