Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113825, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571473

RESUMO

The application of the circular economy concept should utilize the cycles of nature to preserve materials, energy and nutrients for economic use. A full-scale pig farm plant was developed and validated, showing how it is possible to integrate a circular economy concept into a wastewater treatment system capable of recovering energy, nutrients and enabling water reuse. A low-cost swine wastewater treatment system consisting of several treatment modules such as solid-liquid separation, anaerobic digestion, biological nitrogen removal by nitrification/denitrification and physicochemical phosphorus removal and recovery was able to generate 1880.6 ± 1858.5 kWh d-1 of energy, remove 98.6% of nitrogen and 89.7% of phosphorus present in the swine manure. In addition, it was possible to produce enough fertilizer to fertilize 350 ha per year, considering phosphorus and potassium. In addition, the effluent after the chemical phosphorus removal can be safely used in farm cleaning processes or disposed of in water bodies. Thus, the proposed process has proven to be an environmentally superior swine waste management technology, with a positive impact on water quality and ensuring environmental sustainability in intensive swine production.


Assuntos
Esterco , Fósforo , Anaerobiose , Animais , Nitrogênio/análise , Nutrientes , Suínos
2.
Microb Ecol ; 84(2): 539-555, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34498120

RESUMO

Soil bacterial and fungal communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and their role in soil ecosystem processes. Here, information on composition and functions of bacterial and fungal communities were evaluated at two phenological stages of sugarcane (six and twelve months, equivalent to the most intensive vegetative stage and to final maturation, respectively) when organomineral fertilizer, combined with phosphate-solubilizing bacteria (PSB), was added into the soil. Organic compost enriched with apatite (C + A) or phosphorite (C + P) and compost without phosphate enrichment (C) were used in the presence or absence of PSB. In addition, we used a control fertilized with soluble triple superphosphate. The differences were more related to the sampling period than to the type of organomineral fertilizer, being observed higher available phosphorus at six months than at twelve months. Only in the C treatment we observed the presence of Bacillaceae and Planococcaceae, while Pseudomonadaceae were only prevalent in inoculated C + A. As for fungi, the genera Chaetomium and Achroiostachys were only present in inoculated C + P, while the genus Naganishia was most evident in inoculated C + A and in uninoculated C + P. Soliccocozyma represented 75% of the total fungal abundance in uninoculated C while in inoculated C, it represented 45%. The bacterial community was more related to the degradation of easily decomposable organic compounds, while the fungal community was more related to degradation of complex organic compounds. Although the microbial community showed a resilient trait, subtle changes were detected in microbial community composition and function, and this may be related to the increase in yield observed.


Assuntos
Microbiota , Saccharum , Bactérias , Fertilizantes/análise , Fosfatos , Solo , Microbiologia do Solo
3.
J Environ Manage ; 291: 112718, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962280

RESUMO

Aerobic Granular Sludge (AGS) is a biological treatment technology that has been extensively studied in the last decade. The possibility of resource recovery has always been highlighted in these systems, but real-scale applications are still scarce. Therefore, this paper aimed to present a systematic review of resources recovery such as water, energy, chemicals, raw materials, and nutrients from AGS systems, also analyzing aspects of engineering and economic viability. In the solid phase, sludge application in agriculture is an interesting possibility. However, the biosolids' metal concentration (the granules have high adsorption capacity due to the high concentration of extracellular polymeric substances, EPS) may be an issue. Another possibility is the recovery of Polyhydroxyalkanoates (PHAs) and Alginate-like exopolymers (bio-ALE) in the solid phase, emphasizing the last one, which has already been made in some Wastewater Treatment Plants (WWTPs), named and patented as Kaumera® process. The Operational Expenditure (OPEX) can be reduced by 50% in the WWTP when recovery of ALE is made. The ALE recovery reduced sludge yield by up to 35%, less CO2 emissions, and energy saving. Finally, the discharged sludge can also be evaluated to be used for energetic purposes via anaerobic digestion (AD) or combustion. However, the AD route has faced difficulties due to the low biodegradability of aerobic granules.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
4.
J Environ Manage ; 255: 109718, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785459

RESUMO

Using a mathematical model, a resource recovery assessment was carried out at a pulp mill activated sludge wastewater treatment plant (WWTP) located in Uruguay. Through the evaluation of different scenarios, the potential production of methane from secondary sludge, with its inherent energy savings, and the recovery of phosphorus (P) as struvite were estimated. Considering the current WWTP configuration with a sludge retention time (SRT) of 32 days, and according to the model, which is a simplification of reality, the assessment indicates that the implementation of an anaerobic digester (AD) to treat the excess sludge can lead to a methane production of approximately 1736 m3 CH4 d-1, being a promising alternative to increase the WWTP treatment performance. Furthermore, the model predictions suggest that by shortening the SRT from 32 to 5 days, the methane production could increase by up to 5568 m3 CH4 d-1. If the methane produced is used to generate electrical energy to operate the WWTP, energy savings of about 88% can be achieved. Regarding the potential recovery of P as struvite, the addition of a struvite reactor could be an efficient option to recover approximately 1611 mg L-1 of struvite (corresponding to a load of about 433 kg d-1). By optimizing the process performance, these findings highlight the potential recovery of resources in pulp mill WWTP, while complying with stringent effluent discharge standards. In addition, further research activities such as pilot-test or detailed laboratory studies may be needed to validate the previous recommendations for industrial scale application.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Esgotos , Uruguai
5.
Integr Environ Assess Manag ; 16(1): 78-89, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31273947

RESUMO

A wide range of anthropogenic activities have caused various problems to the aquatic environment, leading to economic, social, and environmental losses. The use of materials for the recovery of water quality is very important due to the water scarcity scenario present in different parts of the world. The use of sawdust as an organic adsorbent for P removal in eutrophic environments attempts to address both water quality preservation and possible application of the organic adsorbent as fertilizer for agricultural practices. This use will result in important contributions to the water and food security. In this work, we performed laboratory experiments to study P adsorption and to evaluate possible adsorption of metals and emerging contaminants by sawdust. The experiments were carried out in 36 microcosms (glass jars), using 50% of the flasks as treatments (containing bags with sawdust) and the rest of the flasks as control (water and sediment without sawdust). For future application of sawdust as a fertilizer it is important to be aware of the presence of possible pathogenic microorganisms, thus the presence of helminth eggs was determined in the sawdust. The results showed the tendency of P adsorption by the biosorbent; maximum adsorption occurred at 214 d (41 µg P g-1 ), after the P desorption occurred. No helminth eggs or emerging contaminants and toxic metal were detected in the sawdust after its use as biosorbent, providing an important subsidy regarding the use of the biosorbent as soil fertilizer. Integr Environ Assess Manag 2019;00:1-12. © 2019 SETAC.


Assuntos
Eutrofização , Fósforo , Poluentes Químicos da Água , Purificação da Água , Adsorção , Ecossistema , Fertilizantes
6.
Ciênc. agrotec., (Impr.) ; 41(5): 483-493, Sept.-Oct. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-890643

RESUMO

ABSTRACT Although it is known that alkalinized sewage sludge raises the pH of acid soils, there is limited knowledge regarding its effects on other soil fertility indicators, such as P and K availability and soil organic C content. Thus, the goal of this study was to evaluate how the application of alkalinized sewage sludge affects the fertility of acid soil. Twenty sewage treatment plants were selected throughout Paraná State (Brazil), and samples of alkalinized sewage sludge and samples of the most representative agricultural soil of the region were collected (covering soils with medium, clayey or very clayey texture). Each soil was incubated for 60 days with doses of sewage sludge (0, 10, 20, 40, and 80 Mg ha-1) from its region and equivalent doses of limestone. The alkalinized sewage sludge was superior to limestone in the correction of soil acidity (pH, Al3+, and H + Al3+) and P and Ca2+ availability. The sludge also increased Mg2+ availability in all soils, K+ in seven soils and organic C in three soils. The very clayey soils (higher buffering capacity) supported higher sludge doses than did clayey and medium texture soils. The alkalinized sewage sludge application in acid soils proved to be an interesting alternative to recycling this type of waste, because it improved soil fertility and could reduce costs associated with soil management and crop fertilization.


RESUMO Embora seja conhecido a capacidade do lodo de esgoto alcalinizado em elevar o pH de solos ácidos, tem-se um limitado conhecimento sobre o efeito em outros indicadores da fertilidade do solo, como disponibilidade de P e K e, teor de C orgânico no solo. Assim, o objetivo do estudo foi avaliar como a aplicação de lodo de esgoto alcalinizado afeta a fertilidade de solos ácidos. Foram selecionadas vinte estações de tratamento de esgoto ao longo do Paraná (Brasil), onde foram coletadas amostras de lodo de esgoto alcalinizado e amostras do solo agrícola mais representativo da região (abrangendo solos com textura média, argilosa ou muito argilosa). Cada solo foi incubado por 60 dias com doses de lodo de esgoto (0, 10, 20, 40, e 80 Mg ha-1) da sua região e com doses equivalentes de calcário. O lodo de esgoto alcalinizado foi superior ao calcário na correção da acidez do solo (pH, Al3+ e H+Al3+) e na elevação da disponibilidade P e Ca2+. O lodo também aumentou a disponibilidade de Mg2+ em todos os solos, K+ em sete solos e C orgânico em três solos. Os solos muito argilosos (alta poder tampão) suportam maior dose de lodo em comparação aos solos de textura argilosa e média. A aplicação de lodo de esgoto alcalinizado em solos ácidos demonstrou ser uma interessante alternativa para reciclar esse tipo de resíduo, pois melhorou a fertilidade dos solos e pode vir a reduzir custos com manejo do solo e adubação das culturas.

7.
Sci. agric ; 66(1)2009.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1496921

RESUMO

The availability of phosphorus (P) from " Patos de Minas" phosphate rock (PR) can be improved if it is applied mixed with a water-soluble P source. The objective of this study was to evaluate 32P as a tracer to quantify the effect of the ratio of mixtures of triple superphosphate (TSP) with PR and the rates of application on P availability from PR. Two experiments were conducted in a greenhouse utilizing corn (Zea mays L.) plants as test crop. In the first experiment, the P sources were applied at the rate of 90 mg P kg-1 soil either separately or as compacted mixtures in several TSP:PR ratios (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100 calculated on the basis of the total P content). In the second experiment, the TSP was applied alone or as 50:50 compacted mixtures with PR applied at four P rates (15, 30, 60 and 90 mg P kg-1) while the sole PR treatment was applied at the 90 mg kg-1 P rate . The mixture of PR with TSP improved the P recovery from PR in the corn plant and this effect increased proportionally to the TSP amounts in the mixture. When compared with the plant P recovery from TSP (10.52%), PR-P recovery (2.57%) was much lower even when mixed together in the ratio of 80% TSP: 20% PR. There was no difference in PR-P utilization by the corn plants with increasing P rates in the mixture (1:1 proportion). Therefore, PR-P availability is affected by the proportions of the mixtures with water soluble P, but not by P rates.


A disponibilidade de fósforo do fosfato natural de Patos de Minas (FN) pode ser melhorada se aplicado junto com uma fonte de P solúvel em água. O objetivo desse estudo foi usar o 32P como traçador para quantificar o efeito das doses e das proporções das misturas de superfosfato triplo (SFT) com FN no aumento da disponibilidade de P do FN. Dois experimentos foram desenvolvidos em casa-de-vegetação com plantas de milho (Zea mays L.) como cultura teste. No primeiro experimento as fontes de fósforo, na dose de 90 mg kg-1 de P, foram aplicadas sozinhas ou em misturas compactadas e em várias proporções de SFT com FN (80:20, 60:40, 50:50, 40:60 e 20:80) calculadas com base no teor de P total, enquanto que no segundo, o superfosfato triplo foi aplicado tanto sozinho como em misturas compactadas com o fosfato natural de Patos e em quatro doses de P (15, 30, 60 e 90 mg kg-1) na proporção de 50:50 e o FN sozinho na dose de 90 mg P kg-1. A mistura do FN com o SFT melhorou o aproveitamento do P do FN pelo milho e esse efeito foi crescente com o aumento da proporção do SFT na mistura. Se comparado com o aproveitamento do P do SFT (10,52%) pelas plantas o aproveitamento do P do FN (2,57%) foi baixo, mesmo na proporção de 80% SFT: 20% FN. Não houve diferença no aproveitamento do P do PR entre as doses da mistura na proporção de 1:1. Portanto, a disponibilidade de P do FN é afetada pela proporção das misturas com a fonte solúvel de P, mas não pelas doses deste nutriente.

8.
Sci. agric. ; 66(1)2009.
Artigo em Inglês | VETINDEX | ID: vti-440331

RESUMO

The availability of phosphorus (P) from " Patos de Minas" phosphate rock (PR) can be improved if it is applied mixed with a water-soluble P source. The objective of this study was to evaluate 32P as a tracer to quantify the effect of the ratio of mixtures of triple superphosphate (TSP) with PR and the rates of application on P availability from PR. Two experiments were conducted in a greenhouse utilizing corn (Zea mays L.) plants as test crop. In the first experiment, the P sources were applied at the rate of 90 mg P kg-1 soil either separately or as compacted mixtures in several TSP:PR ratios (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100 calculated on the basis of the total P content). In the second experiment, the TSP was applied alone or as 50:50 compacted mixtures with PR applied at four P rates (15, 30, 60 and 90 mg P kg-1) while the sole PR treatment was applied at the 90 mg kg-1 P rate . The mixture of PR with TSP improved the P recovery from PR in the corn plant and this effect increased proportionally to the TSP amounts in the mixture. When compared with the plant P recovery from TSP (10.52%), PR-P recovery (2.57%) was much lower even when mixed together in the ratio of 80% TSP: 20% PR. There was no difference in PR-P utilization by the corn plants with increasing P rates in the mixture (1:1 proportion). Therefore, PR-P availability is affected by the proportions of the mixtures with water soluble P, but not by P rates.


A disponibilidade de fósforo do fosfato natural de Patos de Minas (FN) pode ser melhorada se aplicado junto com uma fonte de P solúvel em água. O objetivo desse estudo foi usar o 32P como traçador para quantificar o efeito das doses e das proporções das misturas de superfosfato triplo (SFT) com FN no aumento da disponibilidade de P do FN. Dois experimentos foram desenvolvidos em casa-de-vegetação com plantas de milho (Zea mays L.) como cultura teste. No primeiro experimento as fontes de fósforo, na dose de 90 mg kg-1 de P, foram aplicadas sozinhas ou em misturas compactadas e em várias proporções de SFT com FN (80:20, 60:40, 50:50, 40:60 e 20:80) calculadas com base no teor de P total, enquanto que no segundo, o superfosfato triplo foi aplicado tanto sozinho como em misturas compactadas com o fosfato natural de Patos e em quatro doses de P (15, 30, 60 e 90 mg kg-1) na proporção de 50:50 e o FN sozinho na dose de 90 mg P kg-1. A mistura do FN com o SFT melhorou o aproveitamento do P do FN pelo milho e esse efeito foi crescente com o aumento da proporção do SFT na mistura. Se comparado com o aproveitamento do P do SFT (10,52%) pelas plantas o aproveitamento do P do FN (2,57%) foi baixo, mesmo na proporção de 80% SFT: 20% FN. Não houve diferença no aproveitamento do P do PR entre as doses da mistura na proporção de 1:1. Portanto, a disponibilidade de P do FN é afetada pela proporção das misturas com a fonte solúvel de P, mas não pelas doses deste nutriente.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA