RESUMO
We investigated the impact of various complex organic nitrogen sources on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like single cells called blastospores. Specifically, we examined yeast extract, autolyzed yeast, inactive yeast, cottonseed flour, corn bran, and corn gluten meal as nitrogen compounds with different carbon-to-nitrogen (C:N) ratios. Our comprehensive analysis encompassed blastospore production, tolerance to abiotic stresses, shelf stability after drying, and virulence against mealworm larvae, crucial attributes for developing effective blastospore-based biopesticides. Notably, cottonseed flour emerged as the optimal nitrogen source, yielding up to 2.5 × 109 blastospores/mL within 3 days in a bioreactor. These blastospores exhibited the highest tolerance to heat stress and UV-B radiation exposure. The endogenous C:N ratio in blastospore composition was also impacted by nitrogen sources. Bioassays with mealworm larvae demonstrated that blastospores from cottonseed flour were the most virulent, achieving faster lethality (lower LT50) and requiring a lower inoculum (LC50). Importantly, blastospores produced with cottonseed flour displayed extended viability during storage, surpassing the retention of viability compared to those from autolyzed yeast over 180 days at 4°C. Despite differences in storage viability, both nitrogen sources conferred similar long-term blastospore bioactivity against mealworms. In summary, this research advances our understanding of the crucial impact of complex organic nitrogen selection on the phenotypic traits of blastospores in association with their intracellular C:N ratio, contributing to the production of ecologically fit, shelf-stable, and virulent propagules for effective pest biocontrol programs. IMPORTANCE: Biological control through entomopathogenic fungi provides essential ecological services in the integrated management of agricultural pests. In the context of submerged liquid fermentation, the nutritional composition significantly influences the ecological fitness, virulence and quality of these fungi. This study specifically explores the impact of various complex organic nitrogen sources derived from agro-industrial byproducts on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like blastospores. Notably, manipulating the nitrogen source during submerged cultivation can influence the quality, fitness, and performance of blastospores. This research identifies cottonseed flour as the optimal low-cost nitrogen source, contributing to increased production yields, enhanced multi-stress tolerance, heightened virulence with extended shelf life and long-term bioactivity. These findings deepen our understanding of the critical role of nitrogen compound selection in liquid media formulation, facilitating the production of ecologically fit and virulent blastospores for more effective pest biocontrol programs.
Assuntos
Beauveria , Nitrogênio , Esporos Fúngicos , Beauveria/metabolismo , Beauveria/fisiologia , Beauveria/patogenicidade , Beauveria/crescimento & desenvolvimento , Nitrogênio/metabolismo , Virulência , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Estresse Fisiológico , Larva/microbiologia , Fermentação , Agricultura , Resíduos IndustriaisRESUMO
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects.
RESUMO
BACKGROUND: This paper proposes a workflow to identify genes that respond to specific treatments in plants. The workflow takes as input the RNA sequencing read counts and phenotypical data of different genotypes, measured under control and treatment conditions. It outputs a reduced group of genes marked as relevant for treatment response. Technically, the proposed approach is both a generalization and an extension of WGCNA. It aims to identify specific modules of overlapping communities underlying the co-expression network of genes. Module detection is achieved by using Hierarchical Link Clustering. The overlapping nature of the systems' regulatory domains that generate co-expression can be identified by such modules. LASSO regression is employed to analyze phenotypic responses of modules to treatment. RESULTS: The workflow is applied to rice (Oryza sativa), a major food source known to be highly sensitive to salt stress. The workflow identifies 19 rice genes that seem relevant in the response to salt stress. They are distributed across 6 modules: 3 modules, each grouping together 3 genes, are associated to shoot K content; 2 modules of 3 genes are associated to shoot biomass; and 1 module of 4 genes is associated to root biomass. These genes represent target genes for the improvement of salinity tolerance in rice. CONCLUSIONS: A more effective framework to reduce the search-space for target genes that respond to a specific treatment is introduced. It facilitates experimental validation by restraining efforts to a smaller subset of genes of high potential relevance.
Assuntos
Oryza , Genótipo , Oryza/genética , Tolerância ao Sal , Análise de Sequência de RNA , Estresse Fisiológico/genéticaRESUMO
The main objective of this study was to analyze the effects of the inbreeding degree in high-producing primiparous dairy cows genotypically and phenotypically evaluated and its impacts on production and reproductive parameters. Eighty Holstein-Friesian primiparous cows (age: ~26 months; ~450 kg body weight) were previously genomically analyzed to determine the Inbreeding Index (II) and were divided into two groups: low inbreeding group (LI: <2.5; n = 40) and high inbreeding group (HI: ≥2.5 and ≤5.0; n = 40). Genomic determinations of production and reproductive parameters (14 in total), together with analyses of production (12) and reproductive (11) phenotypic parameters (23 in total) were carried out. Statistically significant differences were obtained between groups concerning the genomic parameters of Milk Production at 305 d and Protein Production at 305 d and the reproductive parameter Daughter Calving Ease, the first two being higher in cows of the HI group and the third lower in the LI group (p < 0.05). For the production phenotypic parameters, statistically significant differences were observed between both groups in the Total Fat, Total Protein, and Urea parameters, the first two being higher in the LI group (p < 0.05). Also, significant differences were observed in several reproductive phenotypic parameters, such as Number of Services per Conception, Calving to Conception Interval, Days Open Post Service, and Current Inter-Partum Period, all of which negatively influenced the HI group (p < 0.05). In addition, correlation analyses were performed between production and reproductive genomic parameters separately and in each consanguinity group. The results showed multiple positive and negative correlations between the production and reproductive parameters independently of the group analyzed, being these correlations more remarkable for the reproductive parameters in the LI group and the production parameters in the HI group (p < 0.05). In conclusion, the degree of inbreeding significantly influenced the results, affecting different genomic and phenotypic production and reproductive parameters in high-producing primiparous cows. The determination of the II in first-calf heifers is crucial to evaluate the negative effects associated with homozygosity avoiding an increase in inbreeding depression on production and reproductive traits.
RESUMO
Candida auris has emerged globally as a multidrug-resistant (MDR) medical care-associated fungal pathogen. Recent reports have demonstrated that C. auris usually expresses fewer virulence factors than does Candida albicans. However, the tendency of C. auris transmission within and between healthcare facilities is unique among Candida spp. and is possibly promoted by virulence and pathogenicity factors that facilitate skin colonization and environmental persistence. To understand the ability of this yeast to cause disease, we herein discuss several virulence and pathogenicity aspects of C. auris.
RESUMO
Biological invasions offer interesting situations for observing how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded sites with long-invaded ones. The native species adopted a life history favoring rapid population growth (i.e., increased fecundity, earlier reproduction, and increased juvenile survival) that may increase its prospects of coexistence with the more competitive invader. We discuss why these effects are more likely to result from genetic change than from maternal effects. The invader exhibited slightly decreased overall performances in recently colonized sites, consistent with a moderate expansion load resulting from local founder effects. Our study highlights a rare example of rapid life-history evolution following invasion.
Assuntos
Evolução Biológica , Espécies Introduzidas , Características de História de Vida , Caramujos/fisiologia , Animais , Guadalupe , Lagoas , Crescimento Demográfico , Caramujos/genéticaRESUMO
BACKGROUND AND OBJECTIVE: Periodontopathogens experience several challenges in the oral cavity that may influence their transcription profile and resulting phenotype. This study evaluated the effect of environmental changes on phenotype and gene expression in a serotype b Aggregatibacter actinomycetemcomitans isolate. MATERIAL AND METHODS: Cultures in early exponential phase and at the start of stationary growth phase in microaerophilic and anaerobic atmospheres were evaluated. Cell hydrophobic properties were measured by adherence to n-hexadecane; in addition, adhesion to, and the ability to invade, KB cells was evaluated. Relative transcription of 12 virulence-associated genes was determined by real-time reverse transcritption quantitative PCR. RESULTS: The culture conditions tested in this study were found to influence the phenotypic and genotypic traits of A. actinomycetemcomitans. Cells cultured in microaerophilic conditions were the most hydrophobic, reached the highest adhesion efficiency and showed up-regulation of omp100 (which encodes an adhesion) and pga (related to polysaccharide synthesis). Cells grown anaerobically were more invasive to epithelial cells and showed up-regulation of genes involved in host-cell invasion or apoptosis induction (such as apaH, omp29, cagE and cdtB) and in adhesion to extracellular matrix protein (emaA). CONCLUSION: Environmental conditions of different oral habitats may influence the expression of factors involved in the binding of A. actinomycetemcomitans to host tissues and the damage resulting thereby, and thus should be considered in in-vitro studies assessing its pathogenic potential.