Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30395, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720749

RESUMO

In Ecuador, the regulatory framework for the remediation of petroleum-contaminated soils is based on predefined concentration endpoints for a selected range of petroleum hydrocarbon compounds. However, such approach may lead to over or under-estimation of the environmental risk posed by contaminated soils. In this study, the end-point remediation criteria according to Ecuadorian Environmental legislation were evaluated using different approaches. The first one was based on Total Extractable Petroleum Hydrocarbons (TEPH) and the second one on Total Bioavailable Petroleum Hydrocarbons (TBPH). Both were compared with ecotoxicological determinations using EC50 -Microtox® bioassay at 5 and 15 min of exposure. The correlation (R2) between EC50 values vs TEPH was of 0.2 and 0.25 for 5 and 15 min, respectively. Meanwhile, R2 between EC50 and TBPH was of 0.9 and 0.65 for 5 and 15 min, respectively, demonstrating a stronger correlation. Our results suggest that a contaminated site where the concentration of the TEPH is higher than the relevant regulatory concentrations may be deemed to present an acceptable risk even though their concentrations exceed the target values in soils. The results also challenge the notion that hormesis is associated with TEPH, contrary to some literature. This study is the first in Ecuador to propose incorporating bioavailability into environmental regulations, highlighting the need for further research to establish realistic and achievable remediation goals based on toxicity studies involving various trophic levels.

2.
Biodegradation ; 34(1): 1-20, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463546

RESUMO

Oily sludge is a residue from the petroleum industry composed of a mixture of sand, water, metals, and high content of hydrocarbons (HCs). The heavy oily sludge used in this study originated from Colombian crude oil with high density and low American Petroleum Institute (API) gravity. The residual waste from heavy oil processing was subject to thermal and centrifugal extraction, resulting in heavy oily sludge with very high density and viscosity. Biodegradation of the total petroleum hydrocarbons (TPH) was tested in microcosms using several bioremediation approaches, including: biostimulation with bulking agents and nutrients, the surfactant Tween 80, and bioaugmentation. Select HC degrading bacteria were isolated based on their ability to grow and produce clear zones on different HCs. Degradation of TPH in the microcosms was monitored gravimetrically and with gas chromatography (GC). The TPH removal in all treatments ranged between 2 and 67%, regardless of the addition of microbial consortiums, amendments, or surfactants within the tested parameters. The results of this study demonstrated that bioremediation of heavy oily sludge presents greater challenges to achieve regulatory requirements. Additional physicochemical treatments analysis to remediate this recalcitrant material may be required to achieve a desirable degradation rate.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Esgotos , Poluentes do Solo/metabolismo , Óleos , Petróleo/análise , Hidrocarbonetos , Tensoativos
3.
Environ Geochem Health ; 45(6): 3541-3554, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36380264

RESUMO

The effect of the presence of gasoline and diesel on the speciation and mobility of inorganic arsenic species in tropical topsoils was investigated. Topsoil samples (n = 25) were contaminated with gasoline and diesel (500 mg kg-1) in laboratory and were incubated under unsaturated conditions and regular aeration for 21 days. Speciation analysis and chemical fractionation were performed in the pore water from control, gasoline, and diesel-contaminated soil samples. Arsenic concentrations were compared to microbiological parameters (microbial metabolic quotient and soil basal breathing) and the presence of ArsM-harboring bacteria. The spike of gasoline and diesel to the topsoils increased pore water As3+ (H3AsO3) concentration. Arsenic mobilization was lower compared to previously reported data for other sources of organic matter (biochar, litter, and a mixture of sphagnum peat moss and composted poultry manure). However, gasoline or diesel addition mobilized As fractions that were adsorbed to the solid phase, in approximately 60% of the soils. Methylation presented an important role in the As3+ regulation in control soils, which was no longer observed after gasoline or diesel addition. The quantification of the labile fractions sampled by the diffusive gradients in thin films technique showed that the increased As concentration in the gasoline or diesel-contaminated soils mostly included inert species. Dissolved organic carbon content seems to be an important control mechanism of the labile As concentration. The increase in As mobility seems to pose a more concerning scenario due to As leaching than to plant uptake.


Assuntos
Arsênio , Poluentes do Solo , Gasolina , Solo/química , Arsênio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 30(7): 17899-17914, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205869

RESUMO

This work describes characterization and leaching studies of pre-salt drill cuttings from offshore oil and gas exploration in ultradeep waters. The metals Fe, Al, and Ba were present in the highest concentrations in drill cuttings (30000 mg kg-1, 32600 mg kg-1, and 33000 mg kg-1 respectively). The most significant contents of Ba, Al, Fe, Cu, Pb, Mn, Si, and Zn were found in cuttings containing non-aqueous fluids (NADF), but the highest concentrations of Ni and Cr were found in samples containing aqueous fluids (WBDF). The content of total petroleum hydrocarbons (TPHs) in the samples with WBDF fluids ranged from < 5.58 to 15.76 mg Kg-1 while the TPH content of the samples with NADF ranged from 28.46 to 47.16 mg Kg-1. Data on the content of unresolved complex mixtures (UCMs) and sheen tests indicated probable contamination of some cutting samples with oil. Most samples showed some degree of contamination by polycyclic aromatic hydrocarbons (PAHs). The metals present in the highest concentrations in saline and aqueous leachates were Si and Ba. The metals Cd, Cu, Ni, and Zn were present in varied concentrations in the saline leachates, and the metals Si, Ba, Cu, and Zn were found in the aqueous leachates.


Assuntos
Metais Pesados , Petróleo , Metais/análise , Hidrocarbonetos/análise , Cloreto de Sódio , Cloreto de Sódio na Dieta , Metais Pesados/análise , Monitoramento Ambiental
5.
Environ Pollut ; 314: 120169, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115489

RESUMO

Bioremediation technologies have demonstrated significant success on biological quality recovery of hydrocarbon contaminated soils, employing techniques among which composting and vermiremediation stand out. The aim of this study was to evaluate the efficiency of these processes to remediate diesel-contaminated soil, employing local organic materials and earthworms. During the initial composting stage (75 days), the substrate was made up using contaminated soil, lombricompost, rice hulls and wheat stubbles (60:20:15:5% w/w). Diesel concentration in the contaminated substrate was about 5 g kg-1, equivalent to a Total Petroleum Hidrocarbons (TPH) experimental concentration of 3425 ± 50 mg kg-1. During the later vermiremediation stage (60 days), the earthworm species Eisenia fetida and Amynthas morrisi were evaluated for their hydrocarbon degradation capacity. Physicochemical and biological assays were measured at different times of each stage and ecotoxicity assays were performed at the end of the experiments. TPH concentration reduced 10.91% after composting and from 45.2 to 60.81% in the different treatments after vermiremediation. Compared with TPH degradation in the treatment without earthworms (16.05%), results indicate that earthworms, along with indigenous microorganisms, accelerate the remediation process. Vermiremediation treatments did not present phytotoxicity and reflected high substrate maturity values (>80% Germination Index) although toxic effects were observed due to E. fetida and A morrisi exposure to diesel. Vermiremediation was an efficient technology for the recovery of substrate biological quality after diesel contamination in a short period. The addition of organic materials and suitable food sources aided earthworm subsistence, promoted the decontamination process and improved the substrate quality for future productive applications.


Assuntos
Oligoquetos , Petróleo , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos , Petróleo/metabolismo
6.
Ecotoxicology ; 30(10): 2109-2118, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618289

RESUMO

Accidents involving fuels and oil spills are among the main sources of hydrocarbons to the marine ecosystems and often damage the biota. Diesel and bunker oil are two examples of fuels with broad application that release hydrocarbons to the aquatic environment and little is known about their toxicity on tropical organisms. This study aimed to assess the toxicity of the water-soluble fraction (WSF) of diesel and bunker oils to neotropical marine invertebrates. Commercial fuels were purchased for WSF extraction, analyzed for total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs), and acute and chronic toxicity determined. The WSF analyzed contained varied levels of TPH and PAHs mixtures, especially low molecular weight PAHs; bunker WSF presented higher amounts of TPH and PAHs. Both WSFs tested produced significant mortality of the brine shrimp Artemia salina, affected the reproduction rate of the copepod Nitokra sp, and impaired the embryo-larval development of the mussel Perna perna and of the sea urchin Lytechinus variegatus. In general WSF from diesel was more toxic to the organisms tested, but bunker WSF was more toxic to embryos of L. variegatus. Toxicity started from concentrations of 3% WSF, which can be environmentally relevant after an oil spill, indicating that marine biota may be adversely affected in short term.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Eng. sanit. ambient ; Eng. sanit. ambient;26(2): 327-337, Mar.-Apr. 2021. graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1249757

RESUMO

RESUMO Este trabalho apresenta os resultados da utilização de duas técnicas de investigação geoambiental em alta resolução: investigação passiva de vapores do solo e investigação com o uso de Membrane Interface Probe (MIP), em uma área contaminada por hidrocarbonetos de petróleo, localizada no município de Duque de Caxias, Rio de Janeiro. O processo de gerenciamento ambiental da área iniciou-se em 2012 e contemplou as etapas preconizadas nas legislações vigentes. Os resultados obtidos a partir das investigações tradicionais foram insuficientes para a compreensão das características físicas e geoquímicas necessária para o sucesso das fases de diagnóstico e, consequentemente, da remediação. Portanto, duas investigações em alta resolução foram conduzidas com o objetivo de refinar o modelo conceitual de forma a atender adequadamente à Resolução CONAMA nº 420/09 e à Resolução CONEMA nº 44/12, permitindo ações futuras mais eficientes. A investigação passiva de vapores do solo utilizou amostradores compostos por materiais adsorventes granulares, encapsulados em uma membrana microporosa hidrofóbica e quimicamente inerte que permite a difusão dos vapores presentes no meio. Os resultados representam qualitativamente a presença de contaminação no subsolo. O MIP é uma ferramenta de direct push com medição em tempo real, que detecta a presença da contaminação tanto em meios insaturados quanto saturados inconsolidados. A partir dos resultados integrados, foi possível constatar que a distribuição de compostos orgânicos voláteis (volatile organic compounds (VOCs)) em água subterrânea ocorre de forma descontínua ao longo da área, sendo possível identificar cinco hotspots distintos e suas diferentes áreas fonte, incluindo uma região com presença de fase livre.


ABSTRACT This paper presents the results of two high-resolution site characterization (HRSC) techniques: passive investigation of soil vapors and investigation using Membrane Interface Probe (MIP), in an area contaminated by petroleum hydrocarbon, located in the municipality of Duque de Caxias, Rio de Janeiro. The environmental management process in the area began in 2012 and contemplated the stages recommended by the current legislation. The results obtained from the traditional investigations were insufficient for the understanding of the physical and geochemical aspects for the success of the diagnostic phases and, consequently, the remediation phase. Therefore, it was conducted two high-resolution investigations with the objective of improving the conceptual model in order to comply adequately with CONAMA Resolution 420/09 and CONEMA Resolution 44/12, allowing future actions more efficient. The soil gas passive investigation used samplers composed of granular adsorbent materials, encapsulated in a hydrophobic and chemically inert microporous membrane that allows the diffusion of the vapors present in the media. The results qualitatively represent the presence of contamination in the subsoil. MIP is a direct push tool with real-time measurement, which detect the presence of contamination in both unsaturated and saturated media. From the integrated results, it was possible to verify that the distribution of volatile organic compounds (VOCs) in groundwater occurs in a discontinuous way throughout the area. It was possible to identify five distinct hotspots and their different source areas, including a region with the presence of free-phase.

8.
Mar Environ Res ; 161: 105116, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861142

RESUMO

Exposure of marine fish to hydrocarbon compounds from crude oil can cause physiological and ecological alterations that can result in several cytotoxic, genotoxic, and teratogenic damages. One consequence of this exposure is the dysbiosis of the gut microbiota, where the normal bacterial composition is modified. Herein, we assessed the effect of the exposure to water accommodated fraction (WAF) of a light crude oil into the gut microbiota of a native species, the lined sole Achirus lineatus, a benthonic fish widely distributed in the Gulf of Mexico (GoM). We performed a chronic bioassay using two WAF concentrations (5 and 10% v/v), collecting lined sole entire gastrointestinal tracts for microbiota analyses at two timepoints, 14 and 28 days. Changes in the gut microbiota composition were determined by high throughput amplicon sequencing of the gene 16S rRNA. Diversity analyses showed that WAF exposure produced similar changes in the microbiota composition at both concentrations. Metagenomic functional prediction showed that these alterations could result in a shift in the gut redox status, towards a more anoxygenic environment. Enrichment of bacteria capable of use hydrocarbon as carbon source seems to be fast regardless time of exposure or WAF concentrations. Our results suggest that chronic WAF exposure can cause a dysbiosis in this benthic native species from the GoM.


Assuntos
Microbioma Gastrointestinal , Petróleo , Poluentes Químicos da Água , Animais , Golfo do México , Petróleo/toxicidade , RNA Ribossômico 16S/genética , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Mar Pollut Bull ; 150: 110622, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706725

RESUMO

The Deepwater Horizon (DWH) oil spill from April to July of 2010 contaminated Gulf of Mexico waters through release of an estimated 4.1 × 106 barrels of oil. Beginning in June of 2010, semipermeable membrane devices (SPMDs) were deployed near areas with sensitive marine habitats (Alabama Alps and Western Shelf) potentially exposed to that oil. Elevated TPAH50 concentrations, flux rates and similarity of histograms and diagnostic ratios for polycyclic aromatic hydrocarbons (PAH) from SPMDs to weathered floating oil collected during the DWH spill indicates the Alabama Alps habitats were affected. While not affected by oil from the DWH spill, the temporal pattern of PAH contamination of SPMDs deployed near the Western Shelf between July 2010 and March 2011 could indicate prevailing currents affected contaminant transport to the Western Shelf Area (East and West Flower Garden, Sonnier, and Stetson Banks) from non-DWH sources, including oil and gas exploration, shipping, and Mississippi River effluent.


Assuntos
Monitoramento Ambiental/instrumentação , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alabama , Florida , Golfo do México , Hidrocarbonetos , Mississippi
10.
Ecotoxicology ; 28(9): 1063-1074, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31531801

RESUMO

The oil industry has inherent risks of spills or leaks due to natural or anthropogenic causes, which cause alterations in the soil and damage to the plant. An experiment was carried to investigate the effect of oil on the growth, biomass production, biosynthesis of crude protein of Leersia hexandra grass and the remove of oil from the soil. The results showed different responses by L. hexandra depending on the age, low concentrations of oil induced a significant increase in stolon length, in relative growth rate, in dry matter production and in the biosynthesis of crude protein. The same parameters decreased at high concentrations of oil. However, at the end of the evaluation period of 180 days, high concentrations of oil induced a significant increase in the number of young plants and secondary roots, the terminal third of the main root and root dry matter. The dose response curves had the shape of an inverted U, showing that at days 15, 45, 90 and 180, in stolon length, aerial dry matter production, crude protein (day 90) and young plants (days 45 and 90) exhibited a typical biphasic response. The increase in oil concentration correlated with increases in young plants, number of secondary roots, number of roots at the middle, terminal third and root dry matter. After 180 days exposure the rhizosphere of L. hexandra a total oil removal of oil of 76.7 ± 4 was achieved; 61.7, 51, 44.6, 38 and 52% in soils that initially contained 7.9, 54, 102, 126, 145 and 238 g oil.


Assuntos
Hormese/fisiologia , Poluição por Petróleo/efeitos adversos , Poaceae/fisiologia , Rizosfera , Poluentes do Solo/efeitos adversos , Biodegradação Ambiental , Argila , México , Solo/química , Estresse Fisiológico
11.
Mar Environ Res ; 149: 111-125, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31280120

RESUMO

The Campeche Sound is the major offshore oil producing area in the Southern Gulf of Mexico (SGoM). To evaluate the impact of oil related activities in the ocean floor sediments, we analyzed the geochemical (major and trace element, organic carbon and hydrocarbon concentrations) and biological (benthic foraminifera) composition of 62 superficial sediment samples, from 13 to 1336 m water depth. Cluster and Factor analysis of all the variables indicate that their distribution patterns are mainly controlled by differences between the terrigenous and carbonate platforms in the SGoM. Benthic foraminiferal assemblages were abundant and diverse, and their distribution patterns are mainly determined by water depth and sedimentary environment. However, most of the abundant species are opportunistic and/or low-oxygen tolerant, and many of their tests show oil stains and infillings, characteristic of oil polluted locations, suggesting the environment has been modified by natural seepage or oil-related activities. To determine if these conditions are natural or anthropogenic in origin, pre - industrial settings should be studied. Organic carbon (Corg) content (0.6-2.9%) and total hydrocarbon concentrations (PAHs 1.0-29.5 µg kg-1) were usually higher around the oil platforms area, the natural hydrocarbon seeps ("chapopoteras") area and offshore rivers, but there is no accumulation of oil related trace elements in these areas. However, the comparison with international sediment quality benchmarks indicates that Cd, Cr and Ni concentrations are above the threshold effect level, and also As, Ba and Cu are above the probable effect level benchmarks, which indicate that these element concentrations might be of potential ecological concern. Comprehensive studies involving different proxies, and assessing pre-industrial conditions, must be undertaken before assessing environmental health of marine benthic ecosystems.


Assuntos
Monitoramento Ambiental , Foraminíferos/química , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Biodiversidade , Foraminíferos/classificação , Golfo do México , Poluição por Petróleo
12.
Int J Phytoremediation ; 21(8): 768-776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007033

RESUMO

An experiment was performed for 240 days to evaluate the oil removal through natural attenuation (NA) and phytoremediation (PH) combined with surfactant (SF), in soil up to 76,585 mg kg-1 of total petroleum hydrocarbons (TPH). A completely randomized design was applied using a 4 × 6 factorial arrangement, with four concentrations of oil and six recovery technologies. The technologies were combinations of Leersia hexandra (Lh) grass, NA (native microorganisms), and doses of Tween® 80. The results recorded treatment means with statistical differences (Tukey, p ≤ 0.05 and 0.01). Oil in presence of 5% SF stimulated the formation of grass roots. The SF promoted a significant increase in the biomass of grass stems and leaves but did not contribute to oil removal or microbial density. Unexpectedly, the PH inhibited the removal of oil and induced a decrease in fungi, hydrocarbonoclastic bacteria, and heterotrophic fungi. NA combined with 2.5% SF removed 95% of 48,748 mg of TPH. The best technology for soil decontamination was bioremediation through hydrocarbonoclastic bacteria stimulated with 2.5% SF.


Assuntos
Petróleo , Poluentes do Solo/análise , Biodegradação Ambiental , Descontaminação , Hidrocarbonetos , Solo/química , Microbiologia do Solo
13.
Ecotoxicology ; 28(2): 212-221, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30627964

RESUMO

Bioremediation is very efficient in biodegrading petroleum hydrocarbons. However, the decrease in these target contaminants in soils is not necessarily followed by a decrease in toxicity. The remaining contaminants can be enough to retain toxicity, while incomplete degradation of several compounds can generate sub-products, which can be even more toxic. In this context, the aim of this study was to assess acute and chronic toxicity in Eisenia andrei exposed to soil contaminated with 5% spent lubricant oil before and after 22 months of bioremediation in 150 L aerobic reactors. Applied bioremediation strategies were biostimulation (BIOS), bioaugmentation by adding mature compost from municipal solid waste (BIOA1) and bioaugmentation by adding non-mature compost from municipal solid waste (BIOA2). After 22 months, total petroleum hydrocarbons (TPH) were reduced 71% in BIOS and 73% in both BIOA1 and BIOA2. Polycyclic aromatic hydrocarbons (PAH) were reduced in about 98% in all treatments (BIOS, BIOA1 and BIOA2). At the 14th day of exposure, mortality rates were 7 ± 2, 20 ± 0, 75 ± 25, 93 ± 12 and 100 ± 0% for Eisenia andrei exposed to CONT (soil with no oil addition), BIOS, OLU (soil newly contaminated with 5% spent oil), BIOA1 and BIOA2, respectively. After 14 days, surviving specimens in both BIOS and OLU soils exhibited anatomic deformations, less biomass than the controls, and decrease in juvenile forms and coelomocytes. After 28 days, the mortality rate for BIOS and OLU soils increased to 97 and 100%, respectively. Therefore, even with a reduction of 71-73% for TPH and 98% for PAH, toxic effects remained in all soils bioremediated, probably due to the remaining hydrocarbons and/or hydrocarbon biodegradation products. The results indicate that both chemical analyses and toxicological monitoring are required to follow-up soil remediation progress.


Assuntos
Oligoquetos/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Poluentes do Solo/efeitos adversos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Animais , Biodegradação Ambiental , Solo/química , Fatores de Tempo
14.
Environ Sci Pollut Res Int ; 26(18): 18071-18083, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26315588

RESUMO

This paper presents the oil-suspended particulate matter aggregate (OSA) resulted from the interaction of droplets of dispersed oil in a water column and particulate matter. This structure reduces the adhesion of oil on solid surfaces, promotes dispersion, and may accelerate degradation processes. The effects of the addition of fine sediments (clay + silt) on the formation of OSA, their impact on the dispersion and degradation of the oil, and their potential use in recovering reflective sandy beaches were evaluated in a mesoscale simulation model. Two simulations were performed (21 days), in the absence and presence of fine sediments, with four units in each simulation using oil from the Recôncavo Basin. The results showed that the use of fine sediment increased the dispersion of the oil in the water column up to four times in relation to the sandy sediment. There was no evidence of the transport of hydrocarbons in bottom sediments associated with fine sediments that would have accelerated the dispersion and degradation rates of the oil. Most of the OSA that formed in this process remained in the water column, where the degradation processes were more effective. Over the 21 days of simulation, we observed a 40 % reduction on average of the levels of saturated hydrocarbons staining the surface oil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Material Particulado/química , Poluição por Petróleo/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Adsorção , Cinética , Modelos Teóricos , Propriedades de Superfície
15.
Ecotoxicol Environ Saf ; 162: 673-682, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30025591

RESUMO

Petroleum can pollute pristine shorelines as a consequence of accidental spills or chronic leaks. In this study, the fate of petroleum hydrocarbons in soft pristine sediment of Caleta Valdés (Argentina) subject to ex situ simulated oil pollution was assessed. Sedimentary columns were exposed to medium and high concentrations of Escalante Crude Oil (ECO) and incubated in the laboratory during 30 days. Levels of aliphatic hydrocarbons at different depths of the sedimentary column were determined by gas chromatography. Oil penetration was limited to the first three centimetres in both treatments, and under this depth, hydrocarbons were clearly biogenic (terrestrial plants) as in the whole sedimentary column of the control assay. Bioturbation by macrobenthic infauna was strongly impacted by oil pollution which resulted in reduced sediment oxygenation and low burial of petroleum hydrocarbons. This may partly explain the limited hydrocarbon biodegradation observed, as indicated by the relatively high values of the ratios nC17/pristane, nC18/phytane, and total resolved aliphatic hydrocarbons/unresolved complex mixture. Correspondingly, at the end of the experiment the most probable number of hydrocarbon-degrading bacteria reached ~ 103 MPN g-1 dry weight. These values were lower than those found in chronically polluted coastal sediments, reflecting a low activity level of the oil-degrading community. The results highlight the low attenuation capacities of Caleta Valdés pristine sediments to recover its original characteristics in a short time period if an oil spill occurs. In this work, we present a novel and integrative tool to evaluate the fate of petroleum hydrocarbons and their potential damage on pristine sediments.


Assuntos
Bioensaio , Sedimentos Geológicos/química , Hidrocarbonetos/química , Petróleo/análise , Terpenos/química , Argentina , Bactérias/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa , Poluição por Petróleo , Microbiologia do Solo , Poluentes do Solo/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-29388890

RESUMO

This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg-1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.


Assuntos
Misturas Complexas/isolamento & purificação , Helianthus/química , Resíduos Industriais , Indústria de Petróleo e Gás , Poluentes do Solo/isolamento & purificação , Solo/química , Tensoativos/química , Biodegradação Ambiental , Misturas Complexas/química , Humanos , Hidrocarbonetos/análise , Hidrocarbonetos/isolamento & purificação , Metais Pesados/análise , Metais Pesados/isolamento & purificação , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes do Solo/análise
17.
Bull Environ Contam Toxicol ; 98(5): 698-705, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28210752

RESUMO

Two species of Bacillus, B. thuringiensis B3 and B. cereus B6, isolated from crude oil-contaminated sites in Ecuador, were tested for their capability in degrading polycyclic aromatic hydrocarbons (PAHs) in diesel (shake-flask), and to remove total petroleum hydrocarbons (TPHs) from crude oil- or spent lubricating oil-polluted soils (plot-scale). TPHs and PAHs were analyzed by Gas chromatography-Flame ionization detector (GC-FID) and High performance liquid chromatography (HPLC), respectively. Degradation percentages of PAHs by strain B6 were in the range of 11-83 after 30 days. A mixed culture of both the strains removed 84% and 28% of TPHs from crude oil- and spent lubricating oil-polluted soils, respectively. Reduction in the abundance of total n-alkane fractions (C8-C40) of spent lubricating oil was 94%, which was 18% higher than the control. Our results clearly indicate that the selected strains have great potential in degrading petroleum hydrocarbons at both laboratory- and field-scales.


Assuntos
Bacillus/isolamento & purificação , Poluição por Petróleo/análise , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Cromatografia Gasosa , Equador , Ionização de Chama , Hidrocarbonetos/análise , Petróleo/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química
18.
Mar Pollut Bull ; 114(2): 987-994, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27876372

RESUMO

A 3-year research program was undertaken to assess potential environmental disturbance caused by the Deepwater Horizon oil spill to the soft-bottom macrobenthic communities within Mexican waters of the northwestern Gulf of Mexico. Community properties and temporal/spatial variability were analyzed besides toxicant parameters such as hydrocarbons and trace-metals. Overall infaunal density increased, taxa proportion changed, and small-size opportunistic organisms prevailed throughout the study. Annual abundance-biomass comparison (ABC) curves revealed progressive stress scenarios from moderate to severe. Concentrations of vanadium, nickel, cobalt, PAHs and AHs increased gradually over time. However, low correlations between benthic density and biogeochemical variables were determined. Initially, sedimentary properties were the main drivers of benthic community structure; subsequently, nickel, vanadium and PAHs, indicative of anthropogenic effect, were highlighted. Interannual variability in the macroinfauna was attributed to the synergy of several environmental factors. Undoubtedly, compounds derived from fossil fuels had a significant disturbance role, but their source remains uncertain.


Assuntos
Biodiversidade , Monitoramento Ambiental , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Golfo do México , Hidrocarbonetos , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , México , Níquel , Hidrocarbonetos Policíclicos Aromáticos
19.
Environ Sci Pollut Res Int ; 23(21): 21441-21450, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27507142

RESUMO

This study evaluated the sensitivity of the wolfish Anarhichas denticulatus exposed to crude oil, comparing the effects of mechanically dispersed versus chemically dispersed oil using sub-lethal endpoints. To test the toxicity of this controversial technique, two experiments involving exposure of the organisms for 48 h were conducted. The first experiment assessed the effects of oil exposure on biomarker responses. The second experiment monitored the growth of juveniles over 5 weeks after exposure. Overall, this study demonstrated that polycyclic aromatic hydrocarbon (PAH) biliary metabolites, ethoxyresorufin-O-deethylase (EROD), and acetylcholinesterase (AChE) are appropriate biomarkers to assess exposure of A. denticulatus. Growth rate, both in length and weight, was significantly higher in control compared to oil exposure treatments. The lack of differences between chemically and mechanically dispersed oils in biomarker response and growth suggests that dispersant application is no more toxic than the natural oil dispersion. The results indicate the potential for population-level effects resulting from exposure to oil.


Assuntos
Perciformes/crescimento & desenvolvimento , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Perciformes/metabolismo , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Testes de Toxicidade , Poluentes Químicos da Água/análise
20.
Front Microbiol ; 7: 2131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119669

RESUMO

Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA