RESUMO
HYPOTHESIS: The petal effect is a well-known natural phenomenon in surface science and has served as inspiration for the creation of several materials with superhydrophobic qualities and high adhesion. As surface roughness has a crucial role in these properties, being able to modulate it could help us design materials at will. Capillary penetration frustrates diffusion and promotes large contact angles as well as high adhesion. EXPERIMENTS: Polystyrene surfaces were created using the spin-coating technique. By varying the polymer concentration, the surface roughness was modified. To determine the roughness parameters, atomic force microscopy was used. We recorded advancing and receding contact angles using water and glycerol as test liquids to study contact angle hysteresis, the work of adhesion and the apparent surface energy, which was determined with the Chibowski and Perea-Carpio method. For the purpose of elucidating the wetting states, captive bubble experiments were conducted. FINDINGS: Using an easy method, we create polystyrene surfaces with both superhydrophobicity and strong adhesion, where the roughness area factor regulates wetting transitions from Cassie-Baxter to Wenzel. The receding contact angle suggests capillary penetration, which we demonstrate by captive bubble experiments. In addition, a link was found between the surface roughness and apparent surface energy.
RESUMO
The recent availability of open-access repositories of functional traits has revolutionized trait-based approaches in ecology and evolution. Nevertheless, the underrepresentation of tropical regions and lineages remains a pervasive bias in plant functional trait databases, which constrains large-scale assessments of plant ecology, evolution, and biogeography. Here, we present MelastomaTRAITs 1.0, a comprehensive and updatable database of functional traits for the pantropical Melastomataceae, the ninth-largest angiosperm family with 177 genera and more than 5800 species. Melastomataceae encompass species with a wide diversity of growth forms (herbs, shrubs, trees, epiphytes, and woody climbers), habitats (including tropical forests, savannas, grasslands, and wetlands from sea level to montane areas above the treeline), ecological strategies (from pioneer, edge-adapted and invasive species to shade-tolerant understory species), geographic distribution (from microendemic to continental-wide distribution), reproductive, pollination, and seed dispersal systems. MelastomaTRAITs builds on 581 references, such as taxonomic monographs, ecological research, and unpublished data, and includes four whole-plant traits, six leaf traits, 11 flower traits, 18 fruit traits, and 27 seed traits for 2520 species distributed in 144 genera across all 21 tribes. Most data come from the Neotropics where the family is most species-rich. Miconieae (the largest tribe) contains the highest number of trait records (49.6%) and species (41.1%) records. The trait types with the most information in the database were whole-plant traits, flowers, and leaf traits. With the breadth of functional traits recorded, our database helps to fill a gap in information for tropical plants and will significantly improve our capacity for large-scale trait-based syntheses across levels of organization, plant-animal interactions, regeneration ecology, and thereby support conservation and restoration programs. There are no copyright restrictions on the dataset; please cite this data paper when reusing the data.
Assuntos
Bases de Dados Factuais , Melastomataceae , Ecossistema , Melastomataceae/fisiologia , Melastomataceae/genéticaRESUMO
KEY MESSAGE: EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Frutas , Regulação da Expressão Gênica de Plantas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Rhamnaceae flowers have a peculiar morphology, including keeled sepals, one stamen whorl closely related to the petals, and a broad perigynous hypanthium that supports a voluminous nectary. In the present investigation, we detailed the flower development of five Rhamnaceae species to understand the origin of such specific floral characteristics. Floral buds and flowers were processed for surface and histological analyses. The sepals emerge in sequential order and the other organs in simultaneous order. The development of the perigynous hypanthium renders the floral apex broad and concave. The sepals undergo abaxial thickening early on, forming a keel and strongly influencing the floral merosity. Petals and stamens appear close to each other on the same radius in a very short plastochron. The carpels unite soon after their emergence, forming a syncarpous ovary and free style branches. Differences in intercalary carpel growth promote the formation of inferior (Gouania virgata) and semi-inferior ovaries (Colubrina glandulosa, Hovenia dulcis, and Sarcomphalus joazeiro). Rhamnidium elaeocarpum does not undergo such growth, and the resulting ovary is superior. The keeled sepals promote the isolation of the petal-stamen pair inside the flower bud. The possibility of a common primordium that the originates petal and stamen is refuted. Comparisons with other Rosales families provide insights into the floral origin and diversification of Rhamnaceae.
RESUMO
BACKGROUND: Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. RESULTS: By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. CONCLUSIONS: Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves.
RESUMO
BACKGROUND: APETALA3 (AP3) has significant roles in petal and stamen development in accordance with the classical ABC model. RESULTS: The AP3 homolog, CDM19, from Chrysanthemum morifolium cv. Jinba was cloned and sequenced. Sequence and phylogenetic analyses revealed that CDM19 is of DEF/AP3 lineage possessing the characteristic MIKC-type II structure. Expression analysis showed that CDM19 was transcribed in petals and stamens of ray and disc florets with weak expression in the carpels. Ectopic expression of CDM19 in Arabidopsis wild-type background altered carpel development resulting in multi-carpel siliques. CDM19 could only partially rescue the Arabidopsis ap33 mutant. CONCLUSIONS: Our results suggest that CDM19 may partially be involved in petal and stamen development in addition to having novel function in carpel development.
Assuntos
Proteínas de Plantas/fisiologia , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Chrysanthemum , Flores/crescimento & desenvolvimento , Expressão Ectópica do GeneRESUMO
The tribe Schwenckieae (Solanaceae) is characterised by the presence of appendages on the corolla, a diagnostic trait for the group. These appendages constitute a median distal projection of the three-lobed petal and occur in the genera Melananthus and Schwenckia but are absent in Heteranthia. We investigated the micromorphology and anatomical structure of the appendages and lateral petal lobes of Schwenckia americana (two varieties), S. angustifolia, S. curviflora and S. novaveneciana, and Melananthus fasciculatus. We also performed histochemical tests to determine if the appendages are involved in the production of volatiles, acting as a fragrance secretory structure (osmophore). The appendages have a uniseriate epidermis, whose cells store phenolics and lipids. The parenchyma is starch-rich just prior to anthesis in all species studied. The sensory test and anatomical analyses identified scent-secreting tissues, not only in the appendages, but also in the lateral petal lobes, whose cells are papillose with a sculptured surface. The α-naphthol p-phenylenediamine (NADI) reaction detected volatile (essential oils) compounds in S. americana var. americana and S. americana var. angustifolia. We demonstrated the secretory tissues and the production of lipids in the corolla appendages of Schwenckia and Melananthus, which indicate their osmogenic function and probable scent emission to attract pollinators.
Assuntos
Flores , Solanaceae , Flores/anatomia & histologia , Odorantes , Solanaceae/anatomia & histologia , Solanaceae/fisiologiaRESUMO
Progression of leaf senescence depends on several families of transcription factors. In Arabidopsis, the NAC family plays crucial roles in the modulation of leaf senescence; however, the mechanisms involved in this NAC-mediated regulation have not been extensively explored in agronomic species. Petunia hybrida is an ornamental plant that is commonly found worldwide. Decreasing the rate of leaf and petal senescence in P. hybrida is essential for maintaining plant quality. In this study, we examined the NAC-mediated networks involved in regulating senescence in this species. From 41 NAC genes, the expression of which changed in Arabidopsis during leaf senescence, we identified 29 putative orthologs in P. hybrida. Analysis using quantitative real-time-PCR indicated that 24 genes in P. hybrida changed their transcript levels during natural leaf senescence. Leaf-expressed genes were subsequently assessed in petals undergoing natural and pollination-induced senescence. Expression data and phylogenetic analysis were used to generate a list of 10-15 candidate genes; 7 of these were considered key regulatory candidates in senescence because of their consistent upregulation in the three senescence processes examined. Altogether, we identified common and distinct patterns of gene expression at different stages of leaf and petal development and during progression of senescence. The results obtained in this study will contribute to the understanding of NAC-mediated regulatory networks in petunia.
Assuntos
Petunia/genética , Fatores de Transcrição/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Petunia/fisiologia , Filogenia , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Fatores de Transcrição/genética , Regulação para CimaRESUMO
The characteristics of petal epidermal conical cells affect the quality of the signals perceived by various pollinators. This study aimed to identify variations in micromorphological characteristics of flower petals and their relationship to melittophily, ornithophily and chiropterophily pollination systems. The petals of 11 species were analysed using scanning electron microscopy and optical microscopy and the micromorphological traits were described, measured and compared using Tukey's test, PCA and cluster analysis. Unlike chiropterophily, all melittophilous and some ornithophilous species possessed adaxial epidermal conical cells. Cluster grouping separated chiropterophilous flowers from melittophilous and ornithophilous. PCA analysis showed that the two morphometric profile of conical cells was the attribute that most strongly influenced the grouping of species. When considering the data set of the three pollination systems, melittophilous and ornithophilous plants were more similar to each other than they were to chriopterophilous species. The distance between conical cell apices is an important parameter in interactions with pollinators. This study facilitated recognition of smoothing pollinator resource access through petal micromorphological characteristics. Further research regarding the biometry of micromorphological traits related to pollination is required.
Assuntos
Flores/anatomia & histologia , Plantas/anatomia & histologia , Polinização , Animais , Abelhas/fisiologia , Aves/fisiologia , Quirópteros/fisiologia , Flores/genética , Flores/fisiologia , Fenótipo , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Plantas/genética , Pólen/anatomia & histologia , Pólen/genética , Pólen/fisiologiaRESUMO
MicroRNAs (miRNAs) correspond to a class of endogenous small non-coding RNAs (19-24 nt) that regulates the gene expression, through mRNA target cleavage or translation inhibition. In plants, miRNAs have been shown to play pivotal roles in a wide variety of metabolic and biological processes like plant growth, development, and response to biotic and abiotic stress. Soybean is one of the most important crops worldwide, due to the production of oil and its high protein content. The reproductive phase is considered the most important for soybean yield, which is mainly intended to produce the grains. The identification of miRNAs is not yet saturated in soybean, and there are no studies linking them to the different floral organs. In this study, three different mature soybean floral whorls were used in the construction of sRNA libraries. The sequencing of petal, carpel and stamen libraries generated a total of 10,165,661 sequences. Subsequent analyses identified 200 miRNAs sequences, among which, 41 were novel miRNAs, 80 were conserved soybean miRNAs, 31 were new antisense conserved soybean miRNAs and 46 were soybean miRNAs isoforms. We also found a new miRNA conserved in other plant species, and finally one miRNA-sibling of a soybean conserved miRNA. Conserved and novel miRNAs were evaluated by RT-qPCR. We observed a differential expression across the three whorls for six miRNAs. Computational predicted targets for miRNAs analyzed by RT-qPCR were identified and present functions related to reproductive process in plants. In summary, the increased accumulation of specific and novel miRNAs in different whorls indicates that miRNAs are an important part of the regulatory network in soybean flower.
Assuntos
Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/metabolismo , MicroRNAs/biossíntese , RNA de Plantas/biossíntese , Flores/genética , MicroRNAs/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Glycine max/genéticaRESUMO
BACKGROUND: The development of petal-like organs has occurred repetitively throughout angiosperm evolution. Despite homoplasy, it is possible that common underlying molecular mechanisms are repeatedly recruited to drive the development of petaloid organs. In Zingiberales, infertile, petal-like structures replace fertile stamens, resulting in petaloidy in androecial whorls. Assuming that androecial petaloidy is a shared derived characteristic, we expect to find common ultrastructure and molecular mechanisms underlying androecial petaloidy across Zingiberales. RESULTS: We show that petaloidy in Zingiberales is associated with tightly packed, protruding epidermal cells. Expression patterns for candidate genes involved in petal identity differ between the petaloid organs of Costaceae v. Cannaceae, despite similar macro- and microscopic organization. For all candidate gene families analyzed, our data suggest at least one Zingiberales-specific duplication event. CONCLUSIONS: Our data suggest that the patterns of B-class gene expression across the Zingiberales do not correlate with the occurrence of petaloidy, indicating that androecial petaloidy might have evolved independently of B-class gene expression in some lineages. It is possible that gene duplication may play a role in the diversity of petaloid structures found throughout the Zingiberales. It is likely that Zingiberales petaloidy may also result from the deployment of genes other than those involved in specification of petal identity. Developmental Dynamics 244:1121-1132, 2015. © 2015 Wiley Periodicals, Inc.