Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174151, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909804

RESUMO

Important foraging and nesting habitats for Caribbean green sea turtles (Chelonia mydas) exist within the Mesoamerican Reef System in the Mexican Caribbean. During the last 25 years, urban development and touristic activities have drastically increased in Quintana Roo, Mexico. Moreover, in the last decade, massive pelagic sargasso blooms have also afflicted this region; however, information about the biochemical responses of Caribbean green turtles to these inputs is absent. This study aimed to assess if the oxidative stress indicators in the red blood cells of green turtles are valuable biomarkers of the extent of the anthropic impact in this region. Persistent organic pollutants (POPs) were also measured in the plasma of free-living green turtles during 2015-2018 to characterize these habitats further. As biochemical biomarkers, the production rate of superoxide radical (O2•-), carbonylated protein content, and lipid peroxidation (TBARS) levels, and the activities of superoxide dismutase, glutathione S-transferase (GST), catalase, glutathione peroxidase were measured in erythrocytes. A 15 % occurrence of fibropapillomatosis (FP) was revealed, with tumor size being positively correlated with CAT activity in the affected individuals. A multivariate analysis embracing all oxidative stress markers discriminated green turtles between years of capture (p < 0.001), with those sampled during 2015 presenting the highest production of O2•- (p = 0.001), activities of GST (p < 0.001), levels of TBARS (p < 0.001) and carbonylated proteins (p = 0.02). These local and temporal biochemical responses coincided with the first massive Sargassum spp. bloom reported in the region. The results of this study corroborate the utility of the oxidative stress indicators as biomarkers of environmental conditions (sargasso blooms and POPs) in the green turtle as sentinel species.


Assuntos
Ecossistema , Monitoramento Ambiental , Estresse Oxidativo , Tartarugas , Animais , Tartarugas/fisiologia , México , Poluentes Químicos da Água/análise , Biomarcadores , Catalase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Sargassum/fisiologia , Superóxido Dismutase/metabolismo
2.
Sci Total Environ ; 931: 172848, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703843

RESUMO

Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.

3.
J Environ Sci Health B ; 55(8): 756-766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32663053

RESUMO

This study aims to establish the relationship between the consumption of certain foods and the presence of organochlorine pesticides in human milk. A total of 167 samples of breastmilk were collected. Sample analysis was carried out by gas chromatography with electron capture detector. Pesticide concentrations (op'DDT, pp'DDT, pp'DDE, Σ-DDT, HCB, ß-HCH) were grouped by consumption level of fish, dairy products, meat, eggs, and seafood and then were compared to each other. The odds ratio (OR) was calculated between the concentration of pesticides (higher and/or lower than median) and the exposure variable (high consumption). The results indicated low median concentrations of HCB, ß - HCH, op'DDT and pp'DDT, whose fluctuations and trends between different frequencies of food consumption were not significant. pp'DDE and Σ - DDT values according to the increase in consumption of fish were significantly increased. Women with high fish consumption have a higher risk of high concentrations of pp'DDE and Σ-DDT (OR: high consumption: 5.6 (1.3-23.6). A protective effect was observed in the consumption of dairy products (ß-HCH and op'DDT), meat (HCB), and seafood (pp'DDT). These results suggest that it is possible that the consumption of fish, dairy products, meat, and seafood influences the presence of organochlorine pesticides in the studied population.


Assuntos
Exposição Dietética/análise , Hidrocarbonetos Clorados/análise , Leite Humano/química , Praguicidas/análise , Adulto , Laticínios , Diclorodifenil Dicloroetileno , Ovos/análise , Comportamento Alimentar , Feminino , Produtos Pesqueiros , Contaminação de Alimentos , Humanos , Carne/análise , México
4.
Environ Monit Assess ; 192(7): 475, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613317

RESUMO

The Western Sandpiper, Calidris mauri, is one of the most abundant migratory shorebirds in the Western Hemisphere. Both Bahia Santa Maria (SM) and Ensenada Pabellones (EP) in Sinaloa, Mexico, are critical wintering sites for this species. We described the presence and concentration of 16 organochlorine pesticides (OCPs) in Western Sandpiper muscle and liver tissues collected from SM and EP during the wintering (December-January) and premigration (March-April) periods of 2010 and 2011, respectively. The individual OCP concentrations varied from 0.003 to 0.127 µg/g dry weight (dw) and were lower than the established thresholds for either acute or chronic effects. Western Sandpipers in SM-Premigration had the highest frequency of OCPs (39.3%), followed by EP-Winter (32.1%) and SM-Winter (28.5%). The frequency of occurrence of all OCPs in the liver presented differences between sites during the wintering period as well as between the wintering and premigration periods in SM. As the primary organ responsible for pollutant detoxification, the liver may bioaccumulate these compounds. No clear trends were observed in muscle tissues or among age-sex groups. Our results showed evidence of OCP bioaccumulation in the Western Sandpiper during the wintering period, which may be related to hyperphagia during the premigration period and to the differential intake of OCP types and quantities between sites due to differences in their availability. However, these conclusions are based on relatively low sample sizes for some groups and require further study with non-pooled samples.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Animais , Bioacumulação , Monitoramento Ambiental , México , Estações do Ano
5.
Front Microbiol ; 8: 898, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588565

RESUMO

White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA