Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987858

RESUMO

Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.


Assuntos
Ração Animal/análise , Suplementos Nutricionais/análise , Iminas/análise , Toxinas Marinhas/análise , Mytilus/química , Perna (Organismo)/química , Alimentos Marinhos/análise , Compostos de Espiro/análise , Ração Animal/toxicidade , Animais , Aquicultura , Suplementos Nutricionais/toxicidade , Contaminação de Alimentos , Iminas/toxicidade , Toxinas Marinhas/toxicidade , Medição de Risco , Compostos de Espiro/toxicidade
2.
Dis Aquat Organ ; 132(3): 181-189, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31188133

RESUMO

Apicomplexan-X (APX) is a significant pathogen of the flat oyster Ostrea chilensis in New Zealand. The life cycle and host range of this species are poorly known, with only the zoite stage identified. Here, we report the use of molecular approaches and histology to confirm the presence of APX in samples of green-lipped mussels Perna canaliculus, Mediterranean mussels Mytilus galloprovincialis and hairy mussels Modiolus areolatus collected from widely distributed locations in New Zealand. The prevalence of APX infection estimated by PCR was 22.2% (n = 99) and 50% (n = 30) in cultured green-lipped mussels from Nelson and Coromandel, respectively; 0.8% (n = 258), 3.3% (n = 150) and 35.3% (n = 17) in wild Mediterranean mussels from Nelson, Foveaux Strait and Golden Bay, respectively; and 46.7% (n = 30) in wild hairy mussels from Foveaux Strait. Histology detected all cases of PCR that were positive with APX and appeared to be more sensitive. The prevalence of APX estimated by histology in green-lipped mussels from Coromandel was 60% versus 50% by PCR, and 4.3%, 10.7% and 52.9% by histology versus 0.8%, 3.3% and 35.3% by PCR in wild Mediterranean mussels from Nelson, Foveaux Strait and Golden Bay, respectively. The specific identity of the parasite found in mussels was determined by sequencing PCR products for a portion (676 bp) of the 18S rRNA gene; the resulting sequences were 99-100% similar to APX found in flat oysters. Phylogenetic analyses also confirmed that all isolates from green-lipped, Mediterranean and hairy mussels grouped with APX isolates previously identified from flat oysters. This study indicates the wide geographical distribution of APX and highlights the potentially multi-host specific distribution of the parasite in commercially important bivalve shellfish.


Assuntos
Ostrea , Animais , Nova Zelândia , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA