RESUMO
Poly-ADP-Ribose Polymerase (PARP-1) is an overexpressed enzyme in several carcinomas; consequently, the design of PARP-1 inhibitors has acquired special attention. Hence, in the present study, three compounds (8-10) were produced through a Michael addition protocol, using phenylmethanethiol, 5-fluoro-2-mercaptobenzyl alcohol, and 4-mercaptophenylacetic acid, respectively, as nucleophiles and perezone as the substrate, expecting them to be convenient candidates that inhibit PARP-1. It is convenient to note that in the first stage of the whole study, the molecular dynamics (MD) simulations and the quantum chemistry studies of four secondary metabolites, i.e., perezone (1), perezone angelate (2), hydroxyperezone (3), and hydroxyperezone monoangelate (4), were performed, to investigate their interactions in the active site of PARP-1. Complementarily, a docking study of a set of eleven sulfur derivatives of perezone (5-15) was projected to explore novel compounds, with remarkable affinity to PARP-1. The molecules 8-10 provided the most adequate results; therefore, they were evaluated in vitro to determine their activity towards PARP-1, with 9 having the best IC50 (0.317 µM) value. Additionally, theoretical calculations were carried out using the density functional theory (DFT) with the hybrid method B3LYP with a set of base functions 6-311++G(d,p), and the reactivity properties were compared between the natural derivatives of perezone and the three synthesized compounds, and the obtained results exhibited that 9 has the best properties to bind with PARP-1. Finally, it is important to mention that 9 displays significant inhibitory activity against MDA-MB-231 and MCF-7 cells, i.e., 145.01 and 83.17 µM, respectively.
Assuntos
Cicloexenos , Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Sesquiterpenos , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células MCF-7 , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológicoRESUMO
This chapter covers a sesquiterpene quinone, commonly named perezone. This molecule is documented as the first secondary metabolite isolated in crystalline form in the New World in 1852. An introduction, with its structure, the IUPAC nomenclature, and the most recent physical and spectroscopic characterizations are firstly described initially. Alongside this, a timeline and scheme with summarized information of the history of this molecule is given including the "Códice Badiano de la Cruz, 1552, highlighting the year of its isolation culminating with information up to 2005. Subsequently, in a chronological order the most recent advances of the target molecule are included and organized in subsections covering the last 15-year period 2006-2020. Finally, recently submitted contributions from the laboratory of the authors are described. It is important to note that the details provided highlight the importance and relevance of perezone.
Assuntos
Sesquiterpenos , QuinonasRESUMO
Perezone, a sesquiterpene quinone, is a very important molecule due to its pharmacological activities in addition to the fact that it is considered to be the first secondary metabolite isolated in the new world (America-Mexico, 1852). This study aims to offer a green comparative study about the extraction of the target molecule from the roots of the vegetable specimen Acourtia platyphilla (A. Grey). The study was performed comparing five different modes of extraction: supercritical CO2, electromagnetic infrared and microwave irradiations, mechanical-wave ultrasound versus typical mantle heating procedure. An exhaustive comparative-discussion of the obtained results is provided. It is worth noting that the corresponding quantifications were established using 1H NMR, correlating appropriately the integrals of the vinylic proton H-6 of perezone with the aromatic singlet of p-dinitrobenzene employed as an internal reference. It is also important to highlight that the four presented procedures are novel modes to extract perezone. Finally, a complementary study about the solubility of the target sesquiterpene quinone related to the use of supercritical CO2 is also reported.
Assuntos
Asteraceae/química , Dióxido de Carbono/química , Extratos Vegetais/química , Raízes de Plantas/química , Sesquiterpenos/química , Cromatografia com Fluido SupercríticoRESUMO
Cancer is one of the leading causes of morbidity and mortality worldwide. This disease is characterized by uncontrolled growth and proliferation of abnormal cells with a high probability to develop metastasis. Recently, it was demonstrated that perezone, a sesquiterpene quinone, is capable to induce cell death in leukemia (K562), prostate (PC-3), colorectal (HCT-15) and lung (SKLU-1) cancer cell lines; however, its mechanism of action is unknown. Therefore, in this study, in vitro and computational studies were performed to determine the mechanism of action of perezone. Firstly, changes in K562â¯cell viability, as well as changes in the redox status of the cell in response to treatment with several concentrations of perezone were analyzed. The type of cell death induced, and the modification of the cell cycle were determined. In addition, MD simulations and docking studies were performed to investigate the interaction of perezone with seven regulators of the apoptotic process. Finally, the ability of perezone to inhibit PARP-1 was evaluated by in vitro studies. K562 cells treated with perezone exhibited decreased viability and more oxidized status, being this effect concentration-dependent. In addition, the increase of G0/G1 phase of cell cycle and apoptosis were observed. According to the performed computational studies conducted, perezone showed the highest affinity to PARP-1 enzyme being this complex the most stable due to the presence of a small and deep cavity in the active site, which allows perezone to fit deeply by forming hydrogen bonds and hydrophobic interactions, which drive this interaction. The activity of perezone as PARP-1 inhibitor was corroborated with an IC50â¯=â¯181.5⯵M. The pro-apoptotic action of perezone may be related to PARP-1 inhibition and changes in the redox state of the cell. The obtained results allowed to understand the biological effect of perezone and, consequently, these could be employed to develop novel PARP-1 inhibitors.