Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 41(3): 501-509, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29159897

RESUMO

Small RNA and chaperone proteins form synergistic duos that play pivotal roles in controlling gene expression in bacteria. This is the case for Hfq, a highly pleiotropic pretranslational modulator of general protein expression, which responds to harsh environmental conditions and influences fitness and virulence in a wide range of pathogenic Enterobacteria. Given this relevancy, we evaluated the presence and potential role of Hfq in the fish pathogen Piscirickettsia salmonis, a Gram-negative bacterium that threatens the sustainability of Chilean salmon production. Using bioinformatics tools were identified and characterized two variants of Hfq, which share the consensus RNA-binding domains and the active sites described functional Hfq other bacteria. Additionally, we demonstrated that hfq-1 and hfq-2 were transcriptionally active when growing in cell-free media and in infected susceptible fish cell line. Expression of both genes differed under different growth conditions and under stress, suggesting that their roles might be independent and different, depending on the bacterial physiological status. In conclusion, we demonstrate the existence of two different and functional ORF coding for the hfq marker in marine bacteria and a preliminary analysis indicating that these two novel proteins might have relevant roles in the biology and pathogenic potential of P. salmonis.


Assuntos
Fator Proteico 1 do Hospedeiro/genética , Oncorhynchus mykiss , Piscirickettsia/isolamento & purificação , Infecções por Piscirickettsiaceae/veterinária , Salmo salar , Sequência de Aminoácidos , Animais , Linhagem Celular , Chile , Doenças dos Peixes/microbiologia , Fator Proteico 1 do Hospedeiro/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Alinhamento de Sequência
2.
Microb Cell Fact ; 15: 83, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184574

RESUMO

BACKGROUND: Corynebacterium pseudotuberculosis, a facultative intracellular bacterial pathogen, is the etiological agent of caseous lymphadenitis (CLA), an infectious disease that affects sheep and goats and it is responsible for significant economic losses. The disease is characterized mainly by bacteria-induced caseous necrosis in lymphatic glands. New vaccines are needed for reliable control and management of CLA. Thus, the putative virulence factors SpaC, SodC, NanH, and PknG from C. pseudotuberculosis FRC41 may represent new target proteins for vaccine development and pathogenicity studies. RESULTS: SpaC, PknG and NanH presented better vaccine potential than SodC after in silico analyses. A total of 136 B and T cell epitopes were predicted from the four putative virulence factors. A cluster analysis was performed to evaluate the redundancy degree among the sequences of the predicted epitopes; 57 clusters were formed, most of them (34) were single clusters. Two clusters from PknG and one from SpaC grouped epitopes for B and T-cell (MHC I and II). These epitopes can thus potentially stimulate a complete immune response (humoral and cellular) against C. pseudotuberculosis. Several other clusters, including two from NanH, grouped B-cell epitopes with either MHC I or II epitopes. The four target proteins were expressed in Escherichia coli. A purification protocol was developed for PknG expression. CONCLUSIONS: In silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development. Target proteins were successfully expressed in E. coli. A protocol for PknG purification is described.


Assuntos
Vacinas Bacterianas/genética , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/patogenicidade , Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Análise por Conglomerados , Corynebacterium pseudotuberculosis/imunologia , Corynebacterium pseudotuberculosis/metabolismo , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Escherichia coli/metabolismo , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Virulência/metabolismo
3.
Front Microbiol ; 6: 1319, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635779

RESUMO

Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA