Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069012

RESUMO

Ouabain, a substance originally obtained from plants, is now classified as a hormone because it is produced endogenously in certain animals, including humans. However, its precise effects on the body remain largely unknown. Previous studies have shown that ouabain can influence the phenotype of epithelial cells by affecting the expression of cell-cell molecular components and voltage-gated potassium channels. In this study, we conducted whole-cell clamp assays to determine whether ouabain affects the activity and/or expression of TRPV4 channels. Our findings indicate that ouabain has a statistically significant effect on the density of TRPV4 currents (dITRPV4), with an EC50 of 1.89 nM. Regarding treatment duration, dITRPV4 reaches its peak at around 1 h, followed by a subsequent decline and then a resurgence after 6 h, suggesting a short-term modulatory effect related to on TRPV4 channel activity and a long-term effect related to the promotion of synthesis of new TRPV4 channel units. The enhancement of dITRPV4 induced by ouabain was significantly lower in cells seeded at low density than in cells in a confluent monolayer, indicating that the action of ouabain depends on intercellular contacts. Furthermore, the fact that U73122 and neomycin suppress the effect caused by ouabain in the short term suggests that the short-term induced enhancement of dITRPV4 is due to the depletion of PIP2 stores. In contrast, the fact that the long-term effect is inhibited by PP2, wortmannin, PD, FR18, and IKK16 suggests that cSrc, PI3K, Erk1/2, and NF-kB are among the components included in the signaling pathways.


Assuntos
Ouabaína , Canais de Cátion TRPV , Humanos , Animais , Ouabaína/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Physiol Mini Rev ; 16(3): 22-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107545

RESUMO

Cardiac arrhythmias are associated with various forms of heart diseases. Ventricular arrhythmias present a significant risk for sudden cardiac death. Atrial fibrillations predispose to blood clots leading to stroke and heart attack. Scientists have been developing patch-clamp technology to study ion channels and action potentials (APs) underlying cardiac excitation and arrhythmias. Beyond the traditional patch-clamp techniques, innovative new techniques were developed for studying complex arrhythmia mechanisms. Here we review the recent development of methods including AP-Clamp, Dynamic Clamp, AP-Clamp Sequential Dissection, and Patch-Clamp-in-Gel. These methods provide powerful tools for researchers to decipher how the dynamic systems in excitation-Ca2+ signaling-contraction feedforward and feedback to control cardiac function and how their dysregulations lead to heart diseases.


Las arritmias cardiacas están asociadas a diferentes tipos de enfermedad cardiaca. Las arritmias ventriculares constituyen un alto riesgo de muerte súbita. La fibrilación auricular predispone a coágulos sanguíneos que pueden producir accidentes cerebrovasculares e infarto miocárdico. Los científicos han desarrollado la técnica de patch-clamp para estudiar los canales iónicos y los potenciales de acción (PAs), que constituyen la base de la excitación y las arritmias cardiacas. Además de las clásicas técnicas de patch-clamp, se desarrollaron técnicas innovativas para estudiar los mecanismos complejos de las arritmias. En este trabajo, describimos diferentes métodos recientemente desarrollados tales como AP-clamp ("clampeo" del PA), Dynamic Clamp ("clampeo" dinámico), AP-Clamp Sequential Dissection, (disección secuencial del "clampeo" del AP), y Patch-Clamp-in-Gel (Patch clamp en gel). Estos métodos constituyen herramientas poderosas para descifrar cómo los sistemas dinámicos que constituyen la excitación-las señales de Ca2+ y la contracción, se retroalimentan para controlar la función cardiaca y cómo sus alteraciones llevan a la enfermedad cardiaca.

3.
Biochem Biophys Res Commun ; 687: 149186, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37931420

RESUMO

FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.


Assuntos
Escherichia coli , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Bactérias/metabolismo
4.
Biophys Rev ; 15(4): 733-750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681094

RESUMO

Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.

5.
Elife ; 122023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565643

RESUMO

Axons are equipped with the digital signaling capacity by which they generate and faithfully propagate action potentials (APs), and also with the analogue signaling capacity by which subthreshold activity in dendrites and soma is transmitted down the axon. Despite intense work, the extent and physiological role for subthreshold synaptic activity reaching the presynaptic boutons has remained elusive because of the technical limitation to record from them. To address this issue, we made simultaneous patch-clamp recordings from the presynaptic varicosities of cerebellar GABAergic interneurons together with their parent soma or postsynaptic target cells in young rat slices and/or primary cultures. Our tour-de-force direct functional dissection indicates that the somatodendritic spontaneous excitatory synaptic potentials are transmitted down the axon for significant distances, depolarizing presynaptic boutons. These analogously transmitted excitatory synaptic potentials augment presynaptic Ca++ influx upon arrival of an immediately following AP through a mechanism that involves a voltage-dependent priming of the Ca++ channels, leading to an increase in GABA release, without any modification in the presynaptic AP waveform or residual Ca++. Our work highlights the role of the axon in synaptic integration.


Assuntos
Axônios , Terminações Pré-Sinápticas , Ratos , Animais , Axônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Cerebelo/fisiologia , Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico , Transmissão Sináptica/fisiologia
6.
Front Aging Neurosci ; 15: 1152497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213542

RESUMO

Introduction: Loud noise-exposure can generate noise-induced tinnitus in both humans and animals. Imaging and in vivo studies show that noise exposure affects the auditory cortex; however, cellular mechanisms of tinnitus generation are unclear. Methods: Here we compare membrane properties of layer 5 (L5) pyramidal cells (PCs) and Martinotti cells expressing the cholinergic receptor nicotinic alpha 2 subunit gene (Chrna2) of the primary auditory cortex (A1) from control and noise-exposed (4-18 kHz, 90 dB, 1.5 h, followed by 1.5 h silence) 5-8 week old mice. PCs were furthermore classified in type A or type B based on electrophysiological membrane properties, and a logistic regression model predicting that afterhyperpolarization (AHP) and afterdepolarization (ADP) are sufficient to predict cell type, and these features are preserved after noise trauma. Results: One week after a loud noise-exposure no passive membrane properties of type A or B PCs were altered but principal component analysis showed greater separation between type A PCs from control and noise-exposed mice. When comparing individual firing properties, noise exposure differentially affected type A and B PC firing frequency in response to depolarizing current steps. Specifically, type A PCs decreased initial firing frequency in response to +200 pA steps (p = 0.020) as well as decreased steady state firing frequency (p = 0.050) while type B PCs, on the contrary, significantly increased steady state firing frequency (p = 0.048) in response to a + 150 pA step 1 week after noise exposure. In addition, L5 Martinotti cells showed a more hyperpolarized resting membrane potential (p = 0.04), higher rheobase (p = 0.008) and an increased initial (p = 8.5 × 10-5) and steady state firing frequency (p = 6.3 × 10-5) in slices from noise-exposed mice compared to control. Discussion: These results show that loud noise can cause distinct effects on type A and B L5 PCs and inhibitory Martinotti cells of the primary auditory cortex 1 week following noise exposure. As the L5 comprises PCs that send feedback to other areas, loud noise exposure appears to alter levels of activity of the descending and contralateral auditory system.

8.
Neuroscience ; 511: 39-52, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156289

RESUMO

Cannabinoids regulate analgesia, which has aroused much interest in identifying new pharmacological therapies in the management of refractory pain. Voltage-gated Na+ channels (Navs) play an important role in inflammatory and neuropathic pain. In particular, Nav1.9 is involved in nociception and the understanding of its pharmacology has lagged behind because it is difficult to express in heterologous systems. Here, we utilized the chimeric channel hNav1.9_C4, that comprises the extracellular and transmembrane domains of hNav1.9, co-expressed with the ß1 subunit on CHO-K1 cells to characterize the electrophysiological effects of ACEA, a synthetic surrogate of the endogenous cannabinoid anandamide. ACEA induced a tonic block, decelerated the fast inactivation, markedly shifted steady-state inactivation in the hyperpolarized direction, decreasing the window current and showed use-dependent block, with a high affinity for the inactivated state (ki = 0.84 µM). Thus, we argue that ACEA possess a local anaesthetic-like profile. To provide a mechanistic understanding of its mode of action at the molecular level, we combined induced fit docking with Monte Carlo simulations and electrostatic complementarity. In agreement with the experimental evidence, our computer simulations revealed that ACEA binds Tyr1599 of the local anaesthetics binding site of the hNav1.9, contacting residues that bind cannabinol (CBD) in the NavMs channel. ACEA adopted a conformation remarkably similar to the crystallographic conformation of anandamide on a non-homologous protein, obstructing the Na+ permeation pathway below the selectivity filter to occupy a highly conserved binding pocket at the intracellular side. These results describe a mechanism of action, possibly involved in cannabinoid analgesia.


Assuntos
Ácidos Araquidônicos , Canabinoides , Humanos , Ácidos Araquidônicos/farmacologia , Canais de Sódio , Dor , Anestésicos Locais , Bloqueadores dos Canais de Sódio/farmacologia
9.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458556

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) neurons are implicated in the etiology and therapeutics of anxiety and depression. Critical periods of vulnerability during brain development enable maladaptive mechanisms to produce detrimental consequences on adult mood and emotional responses. 5-HT plays a crucial role in these mechanisms; however, little is known about how synaptic inputs and modulatory systems that shape the activity of early 5-HT networks mature during postnatal development. We investigated in mice the postnatal trajectory of glutamate and GABA synaptic inputs to dorsal raphe nucleus (DRN) 5-HT neurons, the main source of forebrain 5-HT. High-resolution quantitative analyses with array tomography and ex vivo electrophysiology indicate that cortical glutamate and subcortical GABA synapses undergo a profound refinement process after the third postnatal week, whereas subcortical glutamate inputs do not. This refinement of DRN inputs is not accompanied by changes in 5-HT1A receptor-mediated inhibition over 5-HT neurons. Our study reveals a precise developmental pattern of synaptic refinement of DRN excitatory and inhibitory afferents, when 5-HT-related inhibitory mechanisms are in place. These findings contribute to the understanding of neurodevelopmental vulnerability to psychiatric disorders. This article has an associated 'The people behind the papers' interview.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Ratos , Camundongos , Animais , Ácido Glutâmico , Ratos Sprague-Dawley , Neurônios , Sinapses/fisiologia , Ácido gama-Aminobutírico
10.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362049

RESUMO

Ouabain is a cardiac glycoside, initially isolated from plants, and currently thought to be a hormone since some mammals synthesize it endogenously. It has been shown that in epithelial cells, it induces changes in properties and components related to apical-basolateral polarity and cell-cell contacts. In this work, we used a whole-cell patch clamp to test whether ouabain affects the properties of the voltage-gated potassium currents (Ik) of epithelial cells (MDCK). We found that: (1) in cells arranged as mature monolayers, ouabain induced changes in the properties of Ik; (2) it also accelerated the recovery of Ik in cells previously trypsinized and re-seeded at confluence; (3) in cell-cell contact-lacking cells, ouabain did not produce a significant change; (4) Na+/K+ ATPase might be the receptor that mediates the effect of ouabain on Ik; (5) the ouabain-induced changes in Ik required the synthesis of new nucleotides and proteins, as well as Golgi processing and exocytosis, as evidenced by treatment with drugs inhibiting those processes; and (5) the signaling cascade included the participation of cSrC, PI3K, Erk1/2, NF-κB and ß-catenin. These results reveal a new role for ouabain as a modulator of the expression of voltage-gated potassium channels, which require cells to be in contact with themselves.


Assuntos
Ouabaína , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Ouabaína/farmacologia , Potássio/metabolismo , Canais de Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Epiteliais/metabolismo , Mamíferos/metabolismo
11.
Cell Mol Life Sci ; 79(11): 564, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36282426

RESUMO

Cannabidiol (CBD), an important terpenoid compound from marijuana with no psychoactive effects, has become of great pharmaceutical interest for several health conditions. As CBD is a multitarget drug, there is a need to establish the molecular mechanisms by which CBD may exert therapeutic as well as adverse effects. The α7 nicotinic acetylcholine receptor (α7 nAChR) is a cation-permeable ACh-gated channel present in the nervous system and in non-neuronal cells. It is involved in different pathological conditions, including neurological and neurodegenerative disorders, inflammation, and cancer. By high-resolution single-channel recordings and confocal microscopy, we here reveal how CBD modulates α7 nAChR ionotropic and metabotropic functions. CBD leads to a profound concentration-dependent decrease of α7 nAChR single-channel activity with an IC50 in the sub-micromolar range. The inhibition of α7 nAChR activity, which takes place through a membrane pathway, is neither mediated by receptor phosphorylation nor overcome by positive allosteric modulators and is compatible with CBD stabilization of resting or desensitized α7 nAChR conformational states. CBD modulation is complex as it also leads to the later appearance of atypical, low-frequency α7 nAChR channel openings. At the cellular level, CBD inhibits the increase in intracellular calcium triggered by α7 nAChR activation, thus decreasing cell calcium responses. The modulation of α7 nAChR is of pharmacological relevance and should be considered in the evaluation of CBD potential therapeutic uses. Thus, our study provides novel molecular information of CBD multiple actions and targets, which is required to set the basis for prospective applications in human health.


Assuntos
Canabidiol , Receptores Nicotínicos , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Cálcio/metabolismo , Canabidiol/farmacologia , Receptores Nicotínicos/metabolismo
12.
J Biol Chem ; 298(9): 102356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952761

RESUMO

Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.


Assuntos
Anti-Helmínticos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Nematoides , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Humanos , Muscimol/farmacologia , Piperazinas/farmacologia , Serotonina/farmacologia
14.
Mol Neurobiol ; 59(10): 6076-6090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35859025

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is present in neuronal and non-neuronal cells and has anti-inflammatory actions. Molecular dynamics simulations suggested that α7 nAChR interacts with a region of the SARS-CoV-2 spike protein (S), and a potential contribution of nAChRs to COVID-19 pathophysiology has been proposed. We applied whole-cell and single-channel recordings to determine whether a peptide corresponding to the Y674-R685 region of the S protein can directly affect α7 nAChR function. The S fragment exerts a dual effect on α7. It activates α7 nAChRs in the presence of positive allosteric modulators, in line with our previous molecular dynamics simulations showing favourable binding of this accessible region of the S protein to the nAChR agonist binding site. The S fragment also exerts a negative modulation of α7, which is evidenced by a profound concentration-dependent decrease in the durations of openings and activation episodes of potentiated channels and in the amplitude of macroscopic responses elicited by ACh. Our study identifies a potential functional interaction between α7 nAChR and a region of the S protein, thus providing molecular foundations for further exploring the involvement of nAChRs in COVID-19 pathophysiology.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
15.
Toxicol Lett ; 359: 96-105, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202779

RESUMO

Tebuconazole (TEB) is an important fungicide that belongs to the triazole family. It is widely used in agriculture and its use has experienced a tremendous increase in the last decade. The long-term exposure of humans to this pesticide is a real threat because it is stable in water and soil. The association between long-term exposure to TEB and damage of several biological systems, including hepatotoxicity and cardiotoxicity is evident, however, acute toxicological studies to reveal the toxicity of TEB are limited. This research paper addressed the acute exposure of TEB in murine hearts, cardiomyocytes, and human cardiomyocytes derived from an induced pluripotent stem cell (hiPSC-CMs), spelling out TEB's impact on electromechanical properties of the cardiac tissue. In ex vivo experiments, TEB dose dependently, caused significant electrocardiogram (ECG) remodeling with prolonged PR and QTc interval duration. The TEB was also able to change the action potential waveform in murine cardiomyocytes and hiPSC-CMs. These effects were associated with the ability of the compound to block the L-type calcium current (IC50 = 33.2 ± 7.4 µmol.l-1) and total outward potassium current (IC50 = 5.7 ± 1.5 µmol.l-1). TEB also increased the sodium/calcium exchanger current in its forward and reverse modes. Additionally, sarcomere shortening and calcium transient in isolated cardiomyocytes were enhanced when cells were exposed to TEB at 30 µmol.l-1. Combined, our results demonstrated that acute TEB exposure affects the cardiomyocyte's electro-contractile properties and triggers the appearance of ECG abnormalities.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade/etiologia , Fungicidas Industriais/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
Artigo em Inglês | MEDLINE | ID: mdl-35202806

RESUMO

The calcium-activated chloride channel TMEM16A (ANO1) supports the passive movement of chloride ions across membranes and controls critical cell functions. Here we study the block of wild-type and mutant TMEM16A channels expressed in HEK293 cells by oleic acid, a monounsaturated omega-9 fatty acid beneficial for cardiovascular health. We found that oleic acid irreversibly blocks TMEM16A in a dose- and voltage-dependent manner at low intracellular Ca2+. We tested whether oleic acid interacted with the TMEM16A pore, varying the permeant anion concentration and mutating pore residues. Lowering the permeating anion concentration in the intracellular side did nothing but the blockade was intensified by increasing the anion concentration in the extracellular side. However, the blockade of the pore mutants E633A and I641A was voltage-independent, and the I641A IC50, a mutant with the inner hydrophobic gate in disarray, increased 16-fold. Furthermore, the uncharged methyl-oleate blocked 20-24% of the wild-type and I641A channels regardless of voltage. Our findings suggest that oleic acid inhibits TMEM16A by an allosteric mechanism after the electric field drives oleic acid's charged moiety inside the pore. Block of TMEM16A might be why oleic acid has a beneficial impact on the cardiovascular system.


Assuntos
Canais de Cloreto , Ácido Oleico , Ânions/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/química , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ácido Oleico/farmacologia
17.
Nat Prod Res ; 36(24): 6318-6323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35021940

RESUMO

Drimys winteri J.R.Forst. & G.Forst, a South American evergreen shrub that is used by the Mapuche people for treatment of several painful conditions, contains polygodial, a lipophilic drimane-type sesquiterpene dialdehyde with known activity at transient receptor potential channel family members including TRPA1 and TRPV1. We sought to assess the activity of polygodial at NaV1.7 and NaV1.8, two key isoforms of the voltage-gated sodium channel family involved in nociception. Polygodial was isolated from D. winteri by thin-layer chromatography and analysed structurally by 1 D and 2 D nuclear magnetic resonance (NMR) spectroscopy. Activity at heterologously expressed NaV1.7 and NaV1.8 was assessed using automated whole-cell patch-clamp electrophysiology. Here, we show that polygodial inhibits members of the voltage-gated sodium channel family, specifically NaV1.7 and NaV1.8, without changing the voltage-dependence of activation or inactivation. Activity of polygodial at voltage-gated sodium channels may contribute to the previously reported antinociceptive properties.


Assuntos
Drimys , Sesquiterpenos , Canais de Sódio Disparados por Voltagem , Humanos , Sesquiterpenos/farmacologia
18.
ACS Chem Neurosci ; 13(2): 229-244, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990110

RESUMO

The activation of N-methyl-d-aspartate receptor (NMDAR) is triggered by the closure of bilobed (D1 and D2) clamshell-like clefts upon binding glycine (Gly) and glutamate. There is evidence that cholinergic compounds modulate NMDAR-mediated currents via direct receptor-ligand interactions; however, molecular bases are unknown. Here, we first propose a mechanistic structure-based explanation for the observed ACh-induced submaximal potentiation of NMDA-elicited currents in striatal neurons by predicting competitive inhibition with Gly. Then, the model was validated, in principle, by confirming that the coapplication of Gly and ACh significantly reduces these neuronal currents. Finally, we delineate the interplay of ACh with the NMDAR by a combination of computational strategies. Crystallographic ACh-bound complexes were studied, revealing a similar ACh binding environment on the GluN1 subunit of the NMDAR. We illustrate how ACh can occupy X-ray monomeric open, dimeric "semiopen" cleft conformations obtained by molecular dynamics and a full-active cryo-EM NMDAR structure, explaining the suboptimal NMDAR electrophysiological activity under the "Venus Flytrap model". At an evolutionary biology level, the binding mode of ACh coincides with that of the homologous ornithine-bound periplasmic LAO binding protein complex. Our computed results indicate an analogous mechanism of action, inasmuch as ACh may stabilize the GluN1 subunit "semiclosed" conformations by inducing direct and indirect D1-to-D2 interdomain bonds. Additionally, an alternative binding site was detected, shared by the known NMDAR allosteric modulators. Experimental and computed results strongly suggest that ACh acts as a Gly-competitive, submaximal potentiating agent of the NMDAR, possibly constituting a novel chemotype for multitarget-directed drug development, e.g., to treat Alzheimer's, and it may lead to a new understanding of glutamatergic neurotransmission.


Assuntos
Acetilcolina , Receptores de N-Metil-D-Aspartato , Glicina/farmacologia , N-Metilaspartato , Neurônios
19.
Cell Mol Life Sci ; 78(13): 5381-5395, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028590

RESUMO

The α7 nicotinic acetylcholine receptor is involved in neurological, neurodegenerative, and inflammatory disorders. It operates both as a ligand-gated cationic channel and as a metabotropic receptor in neuronal and non-neuronal cells. As protein phosphorylation is an important cell function regulatory mechanism, deciphering how tyrosine phosphorylation modulates α7 dual ionotropic/metabotropic molecular function is required for understanding its integral role in physiological and pathological processes. α7 single-channel activity elicited by ACh appears as brief isolated openings and less often as episodes of few openings in quick succession. The reduction of phosphorylation by tyrosine kinase inhibition increases the duration and frequency of activation episodes, whereas the inhibition of phosphatases has the opposite effect. Removal of two tyrosine residues at the α7 intracellular domain recapitulates the effects mediated by tyrosine kinase inhibition. The tyrosine-free mutant receptor shows longer duration-activation episodes, reduced desensitization rate and significantly faster recovery from desensitization, indicating that phosphorylation decreases α7 channel activity by favoring the desensitized state. However, the mutant receptor is incapable of triggering ERK1/2 phosphorylation in response to the α7-agonist. Thus, while tyrosine phosphorylation is absolutely required for α7-triggered ERK pathway, it negatively modulates α7 ionotropic activity. Overall, phosphorylation/dephosphorylation events fine-tune the integrated cell response mediated by α7 activation, thus having a broad impact on α7 cholinergic signaling.


Assuntos
Acetilcolina/metabolismo , Neurônios/metabolismo , Tirosina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Quinases da Família src/metabolismo , Células HEK293 , Humanos , Neurônios/citologia , Fosforilação , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/genética , Quinases da Família src/genética
20.
J Physiol ; 599(12): 3237-3252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33873234

RESUMO

KEY POINTS: Carotid body (CB) chemoreceptors are hyperactive in hypertension, and their acute activation produces bronchoconstriction. We show that the respiratory-modulated bronchiolar tone, pulmonary parasympathetic efferent activity, and the firing frequency and synaptic excitation of bronchoconstrictor motoneurones in the nucleus ambiguus were all enhanced in spontaneous hypertensive (SH) rats. In SH rats, CB denervation reduced the respiratory-related parasympathetic-mediated bronchoconstrictor tone to levels seen in normotensive rats. Chemoreflex evoked bronchoconstrictor tone was heightened in SH versus normotensive rats. The intrinsic electrophysiological properties and morphology of bronchoconstrictor motoneurones were similar across rat strains. The heightened respiratory modulation of parasympathetic-mediated bronchoconstrictor tone to the airways in SH rats is caused by afferent drive from the CBs. ABSTRACT: Much research has described heightened sympathetic activity in hypertension and diminished parasympathetic tone, especially to the heart. The carotid body (CB) chemoreceptors exhibit hyperreflexia and are hyperactive, providing excitatory drive to sympathetic networks in hypertension. Given that acute CB activation produces reflex evoked bronchoconstriction via activation of parasympathetic vagal efferents, we hypothesised that the parasympathetic bronchoconstrictor activity is enhanced in spontaneously hypertensive (SH) rats and that this is dependent on CB inputs. In situ preparations of Wistar and SH rats were used in which bronchiolar tone, the pulmonary branch of the vagus (pVN) and phrenic nerves were recorded simultaneously; whole cell patch clamp recordings of bronchoconstrictor vagal motoneurones were also made from the nucleus ambiguus. Bronchiolar tone, pVN and bronchoconstrictor motoneurones were respiratory modulated and this modulation was enhanced in SH rats. These differences were all eliminated after CB denervation. Stimulation of the CBs increased the phrenic frequency that caused a summation of the respiratory-related increases in pVN, resulting in the development of bronchoconstrictor tone. This tone was exaggerated in SH rats. The enhanced respiratory-parasympathetic coupling to airways in SH rats was not due to differences in the intrinsic electrophysiological properties of bronchoconstrictor motoneurones but reflected heightened pre-inspiratory- and inspiratory-related synaptic drive. In summary, in SH rats the phasic respiratory modulation of parasympathetic tone to the airways is elevated and the greater development of this bronchoconstrictor tone is caused by the heightened afferent drive originating from the CBs. Thus, targeting the CBs may prove effective for increasing lower airway patency.


Assuntos
Hipertensão , Animais , Pressão Sanguínea , Bulbo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA