RESUMO
At least 20,000 plant species produce latex, a capacity that appears to have evolved independently on numerous occasions. With a few exceptions, latex is stored under pressure in specialized cells known as laticifers and is exuded upon injury, leading to the assumption that it has a role in securing the plant after mechanical injury. In addition, a defensive effect against insect herbivores and fungal infections has been well established. Latex also appears to have effects on viruses, and laticifers are a hostile environment for virus colonization. Only one example of successful colonization has been reported: papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2) in Carica papaya. In this review, a summary of studies that support both the pro- and anti-viral effects of plant latex compounds is provided. The latex components represent a promising natural source for the discovery of new pro- and anti-viral molecules in the fields of agriculture and medicine.
Assuntos
Carica , Látex , Agricultura , Antivirais , BiologiaRESUMO
Among the most serious problems in papaya production are the viruses associated with papaya ringspot and papaya sticky disease (PSD). PSD concerns producers worldwide because its symptoms are extremely aggressive and appear only after flowering. As no resistant cultivar is available, several disease management strategies have been used in affected countries, such as the use of healthy seeds, exclusion of the pathogen, and roguing. In the 1990s, a dsRNA virus, papaya meleira virus (PMeV), was identified in Brazil as the causal agent of PSD. However, in 2016 a second virus, papaya meleira virus 2 (PMeV2), with an ssRNA genome, was also identified in PSD plants. Only PMeV is detected in asymptomatic plants, whereas all symptomatic plants contain both viral RNAs separately packaged in particles formed by the PMeV capsid protein. PSD also affects papaya plants in Mexico, Ecuador, and Australia. PMeV2-like viruses have been identified in the affected plants, but the partner virus(es) in these countries are still unknown. In Brazil, PMeV and PMeV2 reside in laticifers that promote spontaneous latex exudation, resulting in the affected papaya fruit's sticky appearance. Genes modulated in plants affected by PSD include those involved in reactive oxygen species and salicylic acid signaling, proteasomal degradation, and photosynthesis, which are key plant defenses against PMeV complex infection. However, the complete activation of the defense response is impaired by the expression of negative effectors modulated by the virus. This review presents a summary of the current knowledge of the Carica papaya-PMeV complex interaction and management strategies.
Assuntos
Carica , Vírus de Plantas , Austrália , Brasil , Equador , México , Vírus de Plantas/genéticaRESUMO
Papaya meleira virus (PMeV) causes sticky disease in Carica papaya in Brazil and Mexico. Despite its economic importance and the need for effective phytosanitary control, it remains unknown whether any insect is the vector of this virus. The aim of this work was to identify potential insect vectors of the PMeV-Mexican variant (PMeV-Mx) and determine whether these potential vectors are capable of transmitting the virus. Adult insects were collected in papaya fields in the south-southeast region of Mexico and were identified morphologically and molecularly. Their abundance and frequency were determined, and quantitative reverse transcription polymerase chain reaction was performed to establish if they carried PMeV-Mx. The Cicadellidae family (Hemiptera) was the most diverse and abundant, and Empoasca papayae was the most abundant species and had the highest virus titers. PMeV-Mx transmission assays were conducted under controlled conditions using E. papayae on C. papaya 'Maradol'. E. papayae was a carrier of PMeV-Mx at 6 h after exposure, and its viral titer increased with time, peaking at 2.125 pg/µl of PMeV-Mx RNA from 20 ng/µl of cDNA, 5 days after exposure (dae). From 14 days after plants were exposed to insects, PMeV-Mx was detected and quantified in 100% of the evaluated papaya plants, whose viral RNA titer increased from 0.06 (21 dae) to 26.6 pg/µl of PMeV-Mx RNA (60 dae) from 20 ng/µl of cDNA. Three months later, these plants developed sticky disease symptoms, demonstrating that E. papayae is capable of transmitting PMeV-Mx to C. papaya 'Maradol'.
Assuntos
Carica , Hemípteros , Vírus de Plantas , Vírus de RNA , Animais , Brasil , Carica/virologia , Hemípteros/virologia , México , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologiaRESUMO
KEY MESSAGE: Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Assuntos
Carica/genética , Carica/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Carica/efeitos dos fármacos , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/genética , Folhas de Planta/virologia , Vírus de RNA/patogenicidade , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de RNARESUMO
Papaya meleira virus (PMeV) infects papaya (Carica papaya L.) and leads to Papaya Sticky Disease (PSD) or "Meleira", characterized by a spontaneous exudation of latex from fruits and leaves only in the post-flowering developmental stage. The latex oxidizes in contact with air and accumulates as a sticky substance on the plant organs, impairing papaya fruit's marketing and exportation. To understand pre-flowering C. papaya resistance to PMeV, an LC-MS/MS-based label-free proteomics approach was used to assess the differential proteome of PMeV-infected pre-flowering C. papaya vs. uninfected (control) plants. In this study, 1333 proteins were identified, of which 111 proteins showed a significant abundance change (57 increased and 54 decreased) and supports the hypothesis of increased photosynthesis and reduction of 26S-proteassoma activity and cell-wall remodeling. All of these results suggest that increased photosynthetic activity has a positive effect on the induction of plant immunity, whereas the reduction of caspase-like activity and the observed changes in the cell-wall associated proteins impairs the full activation of defense response based on hypersensitive response and viral movement obstruction in pre-flowering C. papaya plants. BIOLOGICAL SIGNIFICANCE: The papaya (Carica papaya L.) fruit's production is severely limited by the occurrence of Papaya meleira virus (PMeV) infection, which causes Papaya Sticky Disease (PSD). Despite the efforts to understand key features involved with the plant×virus interaction, PSD management is still largely based on the observation of the first disease symptoms in the field, followed by the elimination of the diseased plants. However, C. papaya develops PSD only after flowering, i.e. about six-months after planting, and the virus inoculum sources are kept in field. The development of PMeV resistant genotypes is impaired by the limited knowledge about C. papaya resistance against viruses. The occurrence of a resistance/tolerance mechanism to PSD symptoms development prior to C. papaya flowering is considered in this study. Thus, field-grown and PMeV-infected C. papaya leaf samples were analyzed using proteomics, which revealed the modulation of photosynthesis-, 26S proteasome- and cell-wall remodeling-associated proteins. The data implicate a role for those systems in C. papaya resistance to viruses and support the idea of a partial resistance induction in the plants at pre-flowering stage. The specific proteins presented in the manuscript represent a starting point to the selection of key genes to be used in C. papaya improvement to PMeV infection resistance. The presented data also contribute to the understanding of virus-induced disease symptoms development in plants, of interest to the plant-virus interaction field.
Assuntos
Carica/microbiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Proteômica/métodos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cromatografia Líquida , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , Fotossíntese , Imunidade Vegetal/genética , Folhas de Planta/virologia , Vírus de Plantas , Complexo de Endopeptidases do Proteassoma , Espectrometria de Massas em TandemRESUMO
Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.
Assuntos
Carica/virologia , Látex/análise , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Carica/ultraestrutura , Interações Hospedeiro-Patógeno , Folhas de Planta/ultraestruturaRESUMO
Papaya meleira virus (PMeV) is the causal agent of papaya (Carica papaya L.) sticky disease, which has been detected through analysis of its double-stranded RNA (dsRNA) genome from plant latex. In this work we demonstrate that PMeV dsRNA is protected during 25 days when latex is diluted in citrate buffer pH 5.0 (1:1 v/v) and maintained at -20ºC. At the same temperature, some protection was observed for pure latex or latex diluted in ultra-pure water. Conversely, the dsRNA was almost completely degraded after 25 days when maintained at 25ºC, indicating the need for freezing. The proper procedures to collect and store papaya latex described here will contribute to efficient and large scale use of molecular diagnosis of PMeV.
Papaya meleira virus (PMeV) é o agente etiológico da meleira do mamoeiro (Carica papaya L.), cujo diagnóstico é feito através da detecção do RNA dupla-fita (dsRNA) viral a partir do látex das plantas. Neste trabalho é demonstrado que o dsRNA do PMeV é protegido durante 25 dias quando diluído em tampão citrato pH 5.0 (1:1 v/v) seguido de armazenamento à -20ºC. Nesta mesma temperatura, o dsRNA foi parcialmente protegido quando o látex foi diluído em água ultra-pura ou mantido puro. Ao contrário, quando as amostras foram mantidas à 25ºC, observou-se uma degradação progressiva do dsRNA, com ausência de bandas após 25 dias, indicando a necessidade do congelamento do látex. Os procedimentos de coleta e armazenamento do látex descritos neste trabalho contribuem para a eficiência e uso em larga escala do diagnóstico molecular do PMeV.
Assuntos
Carica/genética , Componentes do Gene , Técnicas In Vitro , Látex/análise , Látex/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Biodegradação Ambiental , Eletroforese , Amostras de Alimentos , Métodos , MétodosRESUMO
Papaya meleira virus (PMeV) is the causal agent of papaya (Carica papaya L.) sticky disease, which has been detected through analysis of its double-stranded RNA (dsRNA) genome from plant latex. In this work we demonstrate that PMeV dsRNA is protected during 25 days when latex is diluted in citrate buffer pH 5.0 (1:1 v/v) and maintained at -20ºC. At the same temperature, some protection was observed for pure latex or latex diluted in ultra-pure water. Conversely, the dsRNA was almost completely degraded after 25 days when maintained at 25ºC, indicating the need for freezing. The proper procedures to collect and store papaya latex described here will contribute to efficient and large scale use of molecular diagnosis of PMeV.
RESUMO
Papaya meleira virus (PMeV) is the causal agent of papaya (Carica papaya L.) sticky disease, which has been detected through analysis of its double-stranded RNA (dsRNA) genome from plant latex. In this work we demonstrate that PMeV dsRNA is protected during 25 days when latex is diluted in citrate buffer pH 5.0 (1:1 v/v) and maintained at -20°C. At the same temperature, some protection was observed for pure latex or latex diluted in ultra-pure water. Conversely, the dsRNA was almost completely degraded after 25 days when maintained at 25°C, indicating the need for freezing. The proper procedures to collect and store papaya latex described here will contribute to efficient and large scale use of molecular diagnosis of PMeV.
Papaya meleira virus (PMeV) é o agente etiológico da meleira do mamoeiro (Carica papaya L.), cujo diagnóstico é feito através da detecção do RNA dupla-fita (dsRNA) viral a partir do látex das plantas. Neste trabalho é demonstrado que o dsRNA do PMeV é protegido durante 25 dias quando diluído em tampão citrato pH 5.0 (1:1 v/v) seguido de armazenamento à -20°C. Nesta mesma temperatura, o dsRNA foi parcialmente protegido quando o látex foi diluído em água ultra-pura ou mantido puro. Ao contrário, quando as amostras foram mantidas à 25°C, observou-se uma degradação progressiva do dsRNA, com ausência de bandas após 25 dias, indicando a necessidade do congelamento do látex. Os procedimentos de coleta e armazenamento do látex descritos neste trabalho contribuem para a eficiência e uso em larga escala do diagnóstico molecular do PMeV.