Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39338382

RESUMO

The assessment of ricinoleic acid (RA) incorporated into polymeric nanoparticles is a challenge that has not yet been explored. This bioactive compound, the main component of castor oil, has attracted attention in the pharmaceutical field for its valuable anti-inflammatory, antifungal, and antimicrobial properties. This work aims to develop a new and simple analytical method using high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the identification and quantification of ricinoleic acid, with potential applicability in several other complex systems. The method was validated through analytical parameters, such as linearity, limit of detection and quantification, accuracy, precision, selectivity, and robustness. The physicochemical properties of the nanocapsules were characterized by dynamic light scattering (DLS) to determine their hydrodynamic mean diameter, polydispersity index (PDI), and zeta potential (ZP), via transmission electron microscopy (TEM) and quantifying the encapsulation efficiency. The proposed analytical method utilized a mobile phase consisting of a 65:35 ratio of acetonitrile to water, acidified with 1.5% phosphoric acid. It successfully depicted a symmetric peak of ricinoleic acid (retention time of 7.5 min) for both the standard and the RA present in the polymeric nanoparticles, enabling the quantification of the drug loaded into the nanocapsules. The nanocapsules containing ricinoleic acid (RA) exhibited an approximate size ranging from 309 nm to 441 nm, a PDI lower than 0.2, ζ values of approximately -30 mV, and high encapsulation efficiency (~99%). Overall, the developed HPLC-DAD procedure provides adequate confidence for the identification and quantification of ricinoleic acid in PLGA nanocapsules and other complex matrices.

2.
Rev. bras. farmacogn ; 23(1): 153-159, Jan.-Feb. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-666171

RESUMO

The most studied phyto constituent isolated from Virola surinamensis (Rol. ex Rottb.) Warb., Myristicaceae, is the tetrahydrofuran neolignan grandisin, which exhibits a series of biological activities, including trypanocidal, larvicidal and antitumoral. Due to its extremely low solubility, additional studies, including in vivo investigations are challenged by the difficulties in the development of an effective drug delivery system for grandisin. The encapsulation in polymeric nanoparticles is a very attractive alternative for overcoming some of these limitations. In this work, PLGA nanocapsules loaded with grandisin were developed in an attempt to optimize the efficacy of grandisin as an antitumoral drug, with high drug loading and efficiency, prolonged drug release and increased physical-chemical stability. Mean diameter of the nanocapsules was lower than 200 nm, with very low polydispersity. Encapsulation efficiency was above 90%. A sustained in vitro drug release was achieved for up to twenty days and cytotoxicity was markedly increased (IC50 for grandisin-NC and grandisin were 0.005 µM and 0.078 µM, respectively), indicating that polymeric nanocapsules are a potential drug delivery system for grandisin allowing the preparation of formulations viable for further in vivo studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA