Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0260723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943049

RESUMO

IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.


Assuntos
Trichoderma , Animais , Trichoderma/genética , Transdução de Sinais , Micélio , Reprodução , Estresse Oxidativo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1861(3): 660-669, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605637

RESUMO

Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.


Assuntos
Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Bicamadas Lipídicas/química , Peroxidação de Lipídeos/fisiologia , Microdomínios da Membrana/química , Oxidantes Fotoquímicos/química , Oxidantes Fotoquímicos/farmacologia , Oxirredução , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1860(11): 2299-2307, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29852123

RESUMO

We report small angle X-ray scattering (SAXS) data from large unilamellar vesicles as model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) and two oxidized species, namely its hydroperoxidized form POPC-OOH and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) lipid that has a carboxyl group at the end of its truncated sn-2 chain. The replacement of POPC by either POPC-OOH (POPC-OOHxPOPC1-x) or PazePC (PazePCxPOPC1-x), with oxidized lipid molar ratio x varying from 0.00 up to 1.00, permits to experimentally inspect changes in the membrane structural properties due to oxidation. The volume fraction distribution of each lipid chemical group along the bilayer is determined. The results quantify that 95% of the hydroperoxide group lies in the membrane polar moiety, near the carbonyl and phosphate groups, whereas just 5% of OOH group experiences the polar/apolar interface, for all values of x studied. In the case of PazePC up to x = 0.33, a bimodal distribution of the carboxyl group in the interior and polar regions of the lipid membrane is obtained, probably due to a dynamic movement of the shortened alkyl chain towards the water interface. The mean molecular area A gradually increases from 65.4 ± 0.4 Å2 for POPC bilayers to 78 ± 2 Å2 for pure POPC-OOH bilayers, whereas POPC-OOH membrane thickness resulted to be 20% thinner than the non-oxidized POPC membrane. For PazePC up to x = 0.33, A increases to 67 ± 2 Å2 with 10% of membrane thinning. The SAXS results thus demonstrate how the lipid oxidation progress affects the membrane structural features, thus paving the way to better understand membrane damage under oxidative stress.


Assuntos
Peróxido de Hidrogênio/química , Lipossomas Unilamelares/química , Oxirredução , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA