Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Microbiol ; 206(8): 354, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017726

RESUMO

Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.


Assuntos
Aderência Bacteriana , Biofilmes , Implantes Dentários , Lipopeptídeos , Testes de Sensibilidade Microbiana , Titânio , Titânio/farmacologia , Titânio/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Implantes Dentários/microbiologia , Lipopeptídeos/farmacologia , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Bacillus subtilis/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Propriedades de Superfície , Fibroblastos/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Tensoativos/farmacologia
2.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323434

RESUMO

Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1ß, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.


Assuntos
Infecções por Alphavirus , Artrite , Vírus Chikungunya , Periodontite , Humanos , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Vírus Chikungunya/fisiologia , Mediadores da Inflamação/uso terapêutico , Ligantes , Ross River virus/fisiologia
3.
Pharmaceutics ; 15(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36986624

RESUMO

Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.

4.
Clin Oral Investig ; 26(4): 3627-3636, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35001214

RESUMO

OBJECTIVES: The objective of this study is to formulate experimental dental adhesives with different polyhexamethylene guanidine hydrochloride concentrations (PHMGH) and evaluate their physical, chemical, and biological properties. MATERIALS AND METHODS: The experimental adhesives were formulated with 0 (control, GCTRL), 0.5 (G0.5%), 1 (G1%), or 2 (G2%) wt.% into the adhesive. The adhesives were analyzed for degree of conversion (DC%), softening in solvent (ΔKHN%), ultimate tensile strength (UTS), microtensile bond strength (µTBS) immediately and after 1 year of aging, antibacterial activity, and cytotoxicity. RESULTS: There were no differences among groups for DC%, ΔKHN%, and UTS (p > 0.05%). There were no differences between each PHMGH-doped adhesive compared to GCTRL in the immediate µ-TBS (p > 0.05). Adhesives with at least 1 wt.% of PHMGH presented better stability of µ-TBS. PHMGH-doped adhesives showed improved longitudinal µ-TBS compared to GCTRL (p < 0.05). Lower Streptococcus mutans biofilm formation was observed for PHMGH-doped adhesives (p < 0.05). There was lower viability of planktonic S. mutans in the media in contact with the samples when at least 1 wt.% of PHGMGH was incorporated (p < 0.05). The formulated adhesives showed no cytotoxicity against pulp cells (p > 0.05). CONCLUSIONS: The adhesive with 2 wt.% of PHMGH showed the highest antibacterial activity, without affecting the physicochemical properties and cytotoxicity, besides conferring stability for the dental adhesion. CLINICAL RELEVANCE: PHMGH, a positively charged polymer, conveyed antibacterial activity to dental adhesives. Furthermore, it did not negatively affect the essential physicochemical and biocompatibility properties of the adhesives. More importantly, the incorporation of PHMGH provided stability for the µ-TBS compared to the control group without this additive.


Assuntos
Colagem Dentária , Cimentos de Resina , Adesivos , Cimentos Dentários/farmacologia , Dentina , Adesivos Dentinários/farmacologia , Guanidina , Teste de Materiais , Polímeros , Cimentos de Resina/farmacologia , Resistência à Tração
5.
Antibiotics (Basel) ; 10(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572723

RESUMO

Antimicrobial peptides have been proposed as antibiofilm agents. Therefore, we evaluated the effect of endodontic irrigants combined or not with the antimicrobial peptide nisin against an endodontic biofilm model composed of eleven bacterial species. Biofilms were grown on hydroxyapatite discs for 3, 15 and 21 days and treated with 1.5% sodium hypochlorite (NaOCl) or 17% EDTA followed by high-purity nisin (nisin ZP) or saline for 5 min each. Differences between groups were tested by two-way ANOVA and Tukey's multiple comparisons test (p < 0.05). Treatment with 1.5% NaOCl completely eliminated 3-d and 15-d biofilms but did not eradicate 21-d biofilms. Treatment with 1.5% NaOCl and 17% EDTA was equally effective against 21-d biofilms, showing 5-log and 4-log cell reduction, respectively, compared to the untreated control (9 log10, p < 0.05). No significant difference was found between 1.5% NaOCl + nisin ZP and 1.5% NaOCl in 21-d biofilms (p > 0.05). Likewise, no significant difference was found between 17% EDTA + nisin ZP and 17% EDTA treatments (p > 0.05). In conclusion, 1.5% NaOCl or 17% EDTA were effective strategies to combat mature biofilms. The additional use of nisin did not improve the activity of conventional irrigants against multispecies biofilms.

6.
J Evid Based Dent Pract ; 21(2): 101576, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34391562

RESUMO

ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Efficacy of natural antimicrobials derived from phenolic compounds in the control of biofilm in children and adolescents compared to synthetic antimicrobials: A systematic review and meta-analysis. Martins ML, Ribeiro-Lages MB, Masterson D, Magno MB, Cavalcanti YW, Maia LC, Fonseca-Gonçalves A. Arch Oral Biol 2020;118:104844. SOURCE OF FUNDING: Government. This study was financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brazil (CAPES) through the grant number 001. TYPE OF STUDY/DESIGN: Systematic review with meta-analysis of data.


Assuntos
Anti-Infecciosos , Clorexidina , Adolescente , Biofilmes , Brasil , Criança , Humanos , Fenóis
7.
Caries Res ; 55(3): 193-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000728

RESUMO

This study evaluated the effect of experimental solutions containing plant extracts on bacterial species and enamel caries prevention. Microcosm biofilm was produced from human saliva mixed with McBain saliva (0.2% sucrose) on bovine enamel for 5 days (3 days under anaerobiosis and 2 days under aerobiosis) at 37°C. From the 2nd day, the following treatments were applied (1 × 60 s/day): Vochysia tucanorum (10 mg/mL); Myrcia bella (5 mg/mL); Matricaria chamomilla (80 mg/mL); Malva sylvestris, fluoride, and xylitol (Malvatricin Plus®); 0.12% chlorhexidine (CHX, PerioGard®); and PBS (negative control). The medium pH was measured. Quantitative polymerase chain reaction was performed for the detection of Streptococcus mutans and Lactobacillus spp. Enamel demineralization was measured by spectral-domain optical coherence tomography. The data were compared by means of the Kruskal-Wallis/Dunn, two-way ANOVA/Bonferroni, and ANOVA/Tukey tests (p < 0.05). The pH decreased after sucrose exposure; only CHX reestablished pH >5.5 by the last day. CHX also eliminated Lactobacillusspp., but the other treatments did not differ significantly from PBS. Malvatricin Plus® and CHX eliminated S. mutans, but the other treatments did not differ from PBS. Similar results were seen concerning the reduction of lesion depth and reflectivity. The experimental natural-extract solutions were ineffective against cariogenic bacteria and in preventing the development of enamel caries.


Assuntos
Cárie Dentária , Malva , Matricaria , Desmineralização do Dente , Animais , Biofilmes , Bovinos , Cárie Dentária/prevenção & controle , Suscetibilidade à Cárie Dentária , Humanos , Extratos Vegetais/farmacologia , Streptococcus mutans
8.
Clin Implant Dent Relat Res ; 23(2): 197-207, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543600

RESUMO

BACKGROUND: Shifts in microbial communities are common over time, but they may disturb the host-microbiome homeostasis and result in inflammation of the peri-implant issues if a dysbiotic biofilm is established. PURPOSE: Considering that different oral substrate surfaces may have a relevant impact on the microbial adhesion and colonization, the aim of this study was to investigate the microbial communities of the biofilm formed on single-implant restorations using titanium or zirconia abutments and how they correlate with clinical parameters after 3-years of implant loading. MATERIALS AND METHODS: MiSeq sequencing of 16S rRNA amplicons was used to characterize the oral biofilms of individuals (n = 20) who were sampled longitudinally during 3 years of masticatory loading. Bioinformatics analysis and multivariate statistical analysis were used to evaluate the microbial diversity and clinical outcomes. RESULTS: Microbiomes of both abutment materials presented high alpha-diversity indices during all the experimental period, irrespective of the time of sampling. Microbial communities of titanium and zirconia were quite different over time, differing about 30% after 3 years of functional loading. Similarity of microbiomes between tested abutments and contralateral teeth was also low, ranging between 45% and 50% after 3 years of investigation. Periodontal pathogens commonly associated with peri-implantitis were found in both groups. Furthermore, both abutment materials presented strong correlations of diversity indices and microbial taxa with clinical outcomes. CONCLUSIONS: The type of abutment substrate significantly influenced diversity and clustering of communities during 3 years of functional loading. The time of sampling had no effect on the variables. Large correlations were found between microbial findings and clinical outcomes.


Assuntos
Implantes Dentários , Microbiota , Dente Suporte , Projeto do Implante Dentário-Pivô , Humanos , Estudos Prospectivos , RNA Ribossômico 16S/genética , Titânio , Zircônio
9.
Biofouling ; 37(1): 109-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588651

RESUMO

The antimicrobial and anticaries effects of CaneCPI-5 were evaluated. Ninety bovine enamel samples were treated for 60 s with either phosphate-buffered-saline (PBS), 0.12% chlorhexidine (CHX), 0.05 mg ml-1 CaneCPI-5, 0.1 mg ml-1 CaneCPI-5 or 0.5 mg ml-1 CaneCPI-5. They were incubated with inoculum (human saliva + McBain's saliva) for the first 8 h. From then until the end of the experiment, the enamel was exposed to McBain saliva with sucrose and, once a day, for 5 days, they were treated with the solutions. At the end of the experimental period, resazurin and viable plate count assays were performed. Enamel demineralization was also measured. All concentrations of CaneCPI-5 and CHX significantly reduced the activity of biofilms compared with PBS. For viable plate counts, all treatments similarly reduced the lactobacilli and total streptococci; for the mutans streptococci, 0.05 mg ml-1 CaneCPI-5 performed better than CHX. All CaneCPI-5 concentrations significantly reduced the integrated mineral loss. This study represents the first step regarding the use of CaneCPI-5 within the concept of acquired enamel pellicle and biofilm engineering to prevent dental caries.


Assuntos
Cistatinas , Cárie Dentária , Saccharum , Desmineralização do Dente , Animais , Biofilmes , Bovinos , Cárie Dentária/prevenção & controle , Humanos , Saliva , Streptococcus mutans
10.
Odontology ; 109(3): 605-614, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33481145

RESUMO

This study aimed to evaluate two methods of the incorporation of nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into acrylic resin and characterize the profile of early and late microbial communities in class and family taxonomic level by pyrosequencing. The specimens were made by adding different concentrations of AgVO3 (1, 2.5, and 5%) to the heat-activated acrylic resin by two methods: vacuum spatulation (VS) and polymeric film (PF). A control group (0%) without AgVO3 was also obtained for both methods. After 24 h and 7 days of incubation in human saliva, biofilm samples were collected, DNA was extracted, and 16S rRNA genes were sequenced by the 454-Roche sequencing platform. Seventeen classes and 51 families of bacteria were identified. The abundance of Bacteroidia, Bacilli, Negativicutes, Fusobacteria and Betaproteobacteria classes decreased after 7 days of incubation, and Clostridia, Gammaproteobacteria, and unclassified bacteria increased. The Negativicutes and Betaproteobacteria classes were more abundant when the PF method was used, and Gammaproteobacteria was more abundant when VS was used. The incorporation of 5% AgVO3 promoted a reduction in the prevalence of Bacilli, Clostridia, Negativicutes, Betaproteobacteria, and unclassified bacteria, and increased Gammaproteobacteria. The addition of AgVO3 to acrylic resin altered the early and mature microbiome formed on the specimen surface, and the PF method presented a more favorable microbial profile than the VS method.


Assuntos
Nanopartículas Metálicas , Microbiota , Nanoestruturas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polímeros , RNA Ribossômico 16S/genética , Prata , Compostos de Prata , Vanadatos , Vanádio
11.
F1000Res ; 10: 1093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853678

RESUMO

Background: Natural products with antibacterial potential have begun to be tested on biofilm models, bringing us closer to understanding the response generated by the complex microbial ecosystems of the oral cavity. The objective of this study was to evaluate the antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an in vitro biofilm of Streptococcus gordonii and Fusobacterium nucleatum. Methods: The experimental work involved a consecutive, in vitro, longitudinal, and double-blinded study design. Propolis samples were collected from 13 different regions of the Peruvian Andes. The disk diffusion method was used for the antimicrobial susceptibility test. The cytotoxic effect of propolis on human gingival fibroblasts was determined by cell viability method using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the effect of propolis on the biofilm was evaluated by confocal microscopy and polymerase chain reaction (PCR). Results: The 0.78 mg/mL and 1.563 mg/mL concentrations of the methanolic fraction of the chloroform residue of Oxapampa propolis showed effects on biofilm thickness and the copy numbers of the srtA gene of S. gordonii and the radD gene of F. nucleatum at 48 and 120 hours, and chromatography (UV, λ 280 nm) identified rhamnocitrin, isorhamnetin, apigenin, kaempferol, diosmetin, acacetin, glycerol, and chrysoeriol. Conclusions: Of the 13 propolis evaluated, it was found that only the methanolic fraction of Oxapampa propolis showed antibacterial and antibiofilm effects without causing damage to human gingival fibroblasts. Likewise, when evaluating the chemical composition of this fraction, eight flavonoids were identified.


Assuntos
Própole , Antibacterianos/farmacologia , Biofilmes , Ecossistema , Humanos , Peru
12.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32826216

RESUMO

Imbalances within the dental biofilm trigger dental caries, currently considered a dysbiosis and the most prevalent noncommunicable disease. There is still a gap in knowledge about the dynamics of enamel colonization by bacteria from the dental biofilm in caries. The aim, therefore, was to test whether the sequence of enamel colonization by a typically commensal and a cariogenic species modifies biofilm's cariogenicity. Dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis on saliva-coated enamel slabs were inoculated in different sequences: S. mutans followed by S. sanguinis (Sm-Ss), S. sanguinis followed by S. mutans (Ss-Sm), S. mutans and S. sanguinis inoculated at the same time (Sm=Ss), and the single-species controls S. mutans followed by S. mutans (Sm-Sm) and S. sanguinis followed by S. sanguinis (Ss-Ss). Biofilms were exposed to 10% sucrose 3 times per day for 5 days, and the slabs/biofilms were retrieved to assess demineralization, viable cells, biomass, proteins, polysaccharides, and H2O2 production. Compared with Sm-Sm, primary inoculation with S. sanguinis reduced demineralization (P < 0.05). Both Ss-Sm and Sm=Ss sequences showed reduction in biomass, protein, and polysaccharide content (P < 0.05). The highest S. sanguinis viable count and H2O2 production level and the lowest acidogenicity were observed when S. sanguinis colonized enamel before S. mutans (P < 0.05). Initial enamel adherence with commensal biofilms seems to induce more intense competition against more typically cariogenic species, reducing cariogenicity.IMPORTANCE The concept of caries as an ecological disease implies the understanding of the intricate relationships among the populating microorganisms. Under frequent sugar exposure, some bacteria from the dental biofilm develop pathogenic traits that lead to imbalances (dysbiosis). Depending on which microorganism colonizes the dental surface first, different competition strategies may be developed. Studying the interactions in the entire dental biofilm is not an easy task. In this study, therefore, we modeled the interplay among these microorganisms using a caries-inducing species (S. mutans) and a health-associated species (S. sanguinis). Initial enamel adherence with S. sanguinis seems to induce more intense competition against typically caries-inducing species. Besides continuous exposure with sugars, early colonization of the enamel by highly cariogenic species like S. mutans appears to be needed to develop caries lesions as well. Promoting early colonization by health-associated bacteria such as S. sanguinis could help to maintain oral health, delaying dysbiosis.


Assuntos
Biofilmes , Cárie Dentária/microbiologia , Esmalte Dentário/microbiologia , Interações Microbianas , Streptococcus mutans/fisiologia , Streptococcus sanguis/fisiologia
13.
Clin Oral Investig ; 23(6): 2583-2591, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30315423

RESUMO

OBJECTIVE: The aim of this study was to evaluate microbiological changes, oral soft tissue toxicity, and caries-preventive effect of an experimental titanium tetrafluoride (TiF4) varnish compared with a commercially available fluoride varnish (NaF), using in situ and in vivo models. MATERIALS AND METHODS: The treatment groups were the following: TiF4 varnish (experimental varnish), Duraphat® (fluoride positive control), placebo varnish (no fluoride), and no treatment (negative control). The varnishes were applied once over the enamel surface using a microbrush. For the in vivo study, 48 Wistar rats were infected with Streptococcus sobrinus 6715, received a treatment, and were submitted to a cariogenic challenge. After 4 weeks, S. sobrinus, oral soft tissue toxicity, presence, and severity of caries were evaluated. For the in situ study, 12 volunteers took part in this randomized crossover, double-blind study performed in four phases of 14 days each. They used intraoral appliances containing four enamel specimens that received the varnish according treatment group. After 24 h, the varnish was removed and plaque accumulation was allowed. A 20% sucrose solution was dripped over the enamel blocks (10×/day for 5 min each). Total streptococci, S. mutans, Lactobacillus, Candida spp. counts, and presence of white spot lesions were evaluated. Lesion depth was also quantified by micro-CT. RESULTS: For the in vivo study, the fluoride (F-varnishes) showed a statistically significant reduction in the percentage of S. sobrinus compared to the negative control (p < 0.05). Toxicological analysis revealed no abnormalities in oral tissues of rats from all groups, and both F-varnishes reduced the number and severity of caries lesions, without significant differences (p < 0.05). No statistical differences in microbiological counts were seen for the in situ experiment (p > 0.05). However, the specimens treated with TiF4 exhibited lower percentage of white spot lesions and the lesion depth was significantly reduced by F-varnishes (p < 0.05). CONCLUSIONS: F-varnishes showed reduction in the percentage of S. sobrinus in vivo, no oral soft tissue toxicity, and a caries-preventive effect in vivo and in situ. CLINICAL RELEVANCE: NaF varnish is largely used due its capacity to form CaF2-like layer on enamel. Therefore, development of studies focused on other fluoride compounds such as a TiF4 varnish, which may have greater efficacy than NaF against tooth demineralization, is important.


Assuntos
Cariostáticos/farmacologia , Cárie Dentária/prevenção & controle , Fluoretos/farmacologia , Titânio/farmacologia , Animais , Estudos Cross-Over , Método Duplo-Cego , Feminino , Fluoretos Tópicos/farmacologia , Humanos , Ratos , Ratos Wistar , Fluoreto de Sódio/farmacologia
14.
Clin Oral Investig ; 23(9): 3509-3516, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30543026

RESUMO

OBJECTIVES: Limited evidence suggests a putative inhibitory effect of dietary proteins on demineralization during the carious process. The aim was to explore a potential anticaries activity of the egg protein ovalbumin on a relevant in vitro approach. MATERIALS AND METHODS: Biofilms of Streptococcus mutans UA159 were formed on saliva-coated enamel and dentin bovine slabs. Biofilms were challenged with 10% sucrose followed by either a 200 µg/mL solution of ovalbumin or 1:10, 1:100, and 1:1000 (v/v) serial dilutions of that ovalbumin solution, for the entire length of the experiment. Biofilms exposed to 10% sucrose followed only by 0.9% NaCl served as caries-positive control. Once completed the experimental phase, biofilms were analyzed for biomass, viable bacteria, and polysaccharide formation. Final surface hardness (SH) was obtained to calculate %SH loss (demineralization). Two independent experiments were conducted, in triplicate. Data were analyzed by ANOVA and a post hoc test at the 95% confidence level. RESULTS: A reduction (p < 0.05) in biomass and extracellular polysaccharide formation, but not in the number of viable cells, was observed for both dental substrates. All ovalbumin concentrations tested showed lower demineralization than the positive control (p < 0.05), in a dose-dependent manner. The highest concentration showed a reduction in the %SH loss of about 30% for both enamel and dentin. CONCLUSION: Egg ovalbumin presented to sucrose-challenged biofilms of Streptococcus mutans seems to reduce cariogenicity of a biofilm-caries model. CLINICAL RELEVANCE: Ovalbumin may counteract the cariogenic effect of sugars. If these findings are clinically confirmed, novel preventive approaches for caries are warranted.


Assuntos
Biofilmes , Cárie Dentária , Dentina , Ovalbumina , Desmineralização do Dente , Animais , Bovinos , Esmalte Dentário/efeitos dos fármacos , Dentina/efeitos dos fármacos , Ovalbumina/farmacologia , Streptococcus mutans
15.
Arch Oral Biol ; 93: 107-114, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890443

RESUMO

OBJECTIVES: This study characterized the microbial diversity of formed biofilm on the surface of acrylic resins modified with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) after incubation in human saliva. DESIGN: Resin specimens prepared with AgVO3 at concentrations 0%, 1%, 2.5%, and 5% by either vacuum mixing or polymer solubilization were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After 24 h and 7 days of saliva incubation, biofilm samples were collected from the surface of the specimens. The 16S rDNA genes were amplified, sequenced with the 454-Roche next-generation sequencing platform and analyzed to identify the Operational Taxonomic Units at the genus or higher level. RESULTS: Significant differences in the dispersion pattern of the nanoparticles were observed among the two different methods of AgVO3 incorporation. In the microbiological analysis, a total of 103 genera and 7 more inclusive taxa, representing the phyla Bacteroidetes, Firmicutes and Proteobacteria were identified colonizing resin surfaces. The incorporation method of the AgVO3 had little to no significant effect on the microbiota of samples. Significant time and concentration-dependent responses to AgVO3 caused changes in the taxonomic profile at the phylum and genus level. CONCLUSIONS: The results show differences in relation to the microbial diversity of modified resins during the initial phase of biofilm maturation. The incorporation of AgVO3 seems to significantly affect the colonizing microbiota.


Assuntos
Resinas Acrílicas/química , Biofilmes/efeitos dos fármacos , Materiais Dentários/química , Nanopartículas Metálicas/química , Microbiota , Prata/química , Vanadatos/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Técnicas In Vitro , Masculino , Teste de Materiais , Microscopia Eletrônica , Pessoa de Meia-Idade , Polímeros/química , Propriedades de Superfície
16.
Eur J Dent ; 12(1): 27-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657522

RESUMO

OBJECTIVES: Frequent consumption of sugars-containing carbonated beverages has been associated with caries, but the consequences on the dental biofilm remain unclear. The aim was to evaluate the effect of commercial carbonated beverages and their sugar-free version on enamel and dentine demineralization and on the cariogenic properties of Streptococcus mutans biofilms. MATERIALS AND METHODS: Biofilms of S. mutans UA159 were grown on enamel and dentin slabs and exposed 3 times/day for 5 min, to a commercial cola or orange-flavored carbonated beverage or to their sugar-free version. Biofilms/slabs were recovered to assess biomass, viable microorganisms, protein content and polysaccharides. Demineralization was estimated by the variation of Knoop surface microhardness. RESULTS: Exposures to the biofilm with sugars-containing carbonated beverages resulted in similar biomass, viable microorganisms, proteins, and polysaccharides than sucrose (P < 0.05). The sugar-free cola and orange-flavored drink showed lower effect on the biofilm, as compared with sucrose or their sugared version (P < 0.05). All of the products tested, included the sugar-free, showed higher demineralization than the negative control (P < 0.05). CONCLUSIONS: Sugars-containing carbonated beverages enhance cariogenic activity of S. mutans biofilms, comparable with sucrose. Sugar-free carbonated beverages also have a high demineralizing potential, without affecting biofilm properties.

17.
J. appl. oral sci ; J. appl. oral sci;26: e20170113, 2018. graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-893693

RESUMO

Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.


Assuntos
Streptococcus mutans/fisiologia , Streptococcus sanguis/fisiologia , Helicobacter pylori/fisiologia , Biofilmes , Placa Dentária/microbiologia , Plâncton/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Streptococcus mutans/genética , Streptococcus sanguis/genética , Fatores de Tempo , Contagem de Colônia Microbiana , Expressão Gênica , Helicobacter pylori/genética , Hibridização in Situ Fluorescente , Microscopia Confocal , Cárie Dentária/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
18.
Artigo em Espanhol | LILACS | ID: lil-687666

RESUMO

Introducción: Se considera que Streptococcus mutans (S. mutans) y Lactobacillus spp. se asocian con la caries. Otras especies del biofilm oral, como Streptococcus sanguinis (S. sanguinis) han sido sindicadas como protectoras, pero principalmente en niños. Existe escasa evidencia sobre el nivel de estas bacterias en adultos mayores. Objetivo: Determinar si existen diferencias en los recuentos microbianos de tres especies relacionadas con la caries en pacientes adultos y adultos mayores. Materiales y Métodos: Una muestra de pacientes por conveniencia compuesta de 63 pacientes (18 a 79 años) proporcionó saliva estimulada con la que se sembraron placas de agar MSB, MM10 SB y Agar Rogosa para el cultivo de S. mutans, S. sanguinis y Lactobacillus spp., respectivamente. Los recuentos bacterianos fueron expresados como UFC/mL. Resultados: Los recuentos de S. mutans y Lactobacillus spp. no mostraron variaciones relacionadas con la edad (p>0.05). Los adultos mostraron mayores recuentos de S. sanguinis que los adultos mayores, 3.7 x 105 +/- 3.8 x 105 UFC/mL y 5.9 x 104 +/- 9.4 x 104 UFC/mL, respectivamente (p<0.05). Conclusiones: La edad no parece afectar los niveles de especies tradicionalmente consideradas como cariogénicas. Estos resultados sugieren que la edad puede relacionarse con los patrones de colonización de S. sanguinis en el biofilm oral.


Introduction: Streptococcus mutans (S. mutans) and Lactobacillus spp. have been traditionally associated with caries, regardless of the subject’s age. Other oral biofilm species have been linked as caries protective, including Streptococcus sanguinis (S. sanguinis), but mainly in children. Scarce evidence exists on the levels of these bacteria in older adults. Aim: To determine whether there are differences in the microbial counts of three caries-associated bacterial species in adults and older adults. Methodology: A convenience sample of sixty three patients, aged 18 to 79 years, participated in the study. Stimulated saliva samples were obtained and in MSB, MM10 and Rogosa agar plates for the culture of S. mutans, S. sanguinis and Lactobacillus spp., respectively. Bacterial counts were obtained by microscopic observation (10x) of the colonies and expressed in CFU/mL. Results: Bacterial counts of S. mutans and Lactobacillus spp. did not reveal age-related differences (p>0.05). Adults showed higher S. sanguinis counts than older adults with 3.7 x 105 +/- 3.8 x 105 CFU/mL and 5.9 x 104 +/- 9.4 x 104 CFU/mL, respectively (p<0.05). Conclusions: Age does not seem to affect the levels of bacterial species traditionally associated with caries. The results suggest that age may be related to colonization patterns of S. sanguinis in the oral biofilm.


Assuntos
Humanos , Masculino , Adolescente , Adulto , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Cárie Dentária/microbiologia , Lactobacillus/isolamento & purificação , Placa Dentária/microbiologia , Streptococcus mutans/isolamento & purificação , Streptococcus sanguis/isolamento & purificação , Fatores Etários , Contagem de Colônia Microbiana , Estudos Transversais , Saliva/microbiologia
19.
Arch Oral Biol ; 58(9): 1116-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631998

RESUMO

OBJECTIVE: Scarce evidence is available on the cariogenic potential of the widely used commercial sweeteners. The aim of this study was to evaluate the effect of several sweeteners on enamel demineralisation and on the cariogenic properties of Streptococcus mutans biofilms in an artificial caries model. METHODS: S. mutans-UA159 biofilms were cultured on bovine enamel slabs and exposed to one of the following commercial sweeteners in tablet or powder form: stevia, sucralose, saccharin, aspartame or fructose. Ten percent sucrose and 0.9% NaCl were used as caries-positive and caries-negative controls, respectively. Slabs/biofilms were exposed to the sweeteners three times per day for 5min each time. After 5 days, biofilms were recovered to determine: biomass, bacterial counts and intra- and extracellular polysaccharides. Surface microhardness was measured before and after the experiment to assess enamel demineralisation, expressed as percentage of surface hardness loss (%SHL). Data were analysed using analysis of variance (ANOVA) and Bonferroni (p<0.05). RESULTS: All tested commercial sweeteners, except fructose, showed less enamel demineralisation than sucrose (p<0.05). Only saccharine showed less biomass and intracellular polysaccharides than the rest of the groups (p<0.05). Stevia, sucralose and saccharine reduced the number of viable cells when compared with sucrose (p<0.05). All sugar alternatives reduced extracellular polysaccharide formation when compared with sucrose (p<0.05). CONCLUSIONS: Most commercial sweeteners appear to be less cariogenic than sucrose, but still retaining some enamel demineralisation potential. Products containing stevia, sucralose and saccharine showed antibacterial properties and seem to interfere with bacterial metabolism. Further studies are necessary to deepen these findings.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cariogênicos/efeitos adversos , Cárie Dentária/induzido quimicamente , Esmalte Dentário/fisiopatologia , Adoçantes não Calóricos/efeitos adversos , Streptococcus mutans/crescimento & desenvolvimento , Sacarose/efeitos adversos , Desmineralização do Dente/induzido quimicamente , Análise de Variância , Animais , Biofilmes/efeitos dos fármacos , Bovinos , Esmalte Dentário/efeitos dos fármacos , Dureza , Concentração de Íons de Hidrogênio , Cloreto de Sódio , Streptococcus mutans/efeitos dos fármacos
20.
J Oral Microbiol ; 22010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21523216

RESUMO

The relationship between oral health and systemic conditions, including the association between poor oral hygiene, periodontal disease, and respiratory disease, has been increasingly debated over recent decades. A considerable number of hypotheses have sought to explain the possible role of oral bacteria in the pathogenesis of respiratory diseases, and some clinical and epidemiological studies have found results favoring such an association. This review discusses the effect of oral bacteria on respiratory disease, briefly introduces the putative biological mechanisms involved, and the main factors that could contribute to this relationship. It also describes the role of oral care for individuals who are vulnerable to respiratory infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA