Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 44(29): 2256-2273, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37496237

RESUMO

Diketopyrrolopyrrole (DPP) systems have promising applications in different organic electronic devices. In this work, we investigated the effect of 20 different substituent groups on the optoelectronic properties of DPP-based derivatives as the donor ( D )-material in an organic photovoltaic (OPV) device. For this purpose, we employed Hammett's theory (HT), which quantifies the electron-donating or -withdrawing properties of a given substituent group. Machine learning (ML)-based σ m , σ p , σ m 0 , σ p 0 , σ p + , σ p - , σ I , and σ R Hammett's constants previously determined were used. Mono- (DPP-X1 ) and di-functionalized (DPP-X2 ) DPPs, where X is a substituent group, were investigated using density functional theory (DFT), time-dependent DFT (TDDFT), and ab initio methods. Several properties were computed using CAM-B3LYP and the second-order algebraic diagrammatic construction, ADC(2), an ab initio wave function method, including the adiabatic ionization potential ( I P A ), the electron affinity ( E A A ), the HOMO-LUMO gaps ( E g ), and the maximum absorption wavelengths ( λ max ), the first excited state transition 1 S0 → 1 S1 energies ( ∆ E ) (the optical gap), and exciton binding energies. From the optoelectronic properties and employing typical acceptor systems, the power conversion efficiency ( PCE ), open-circuit voltage ( V OC ), and fill factor ( FF ) were predicted for a DPP-based OPV device. These photovoltaic properties were also correlated with the machine learning (ML)-based Hammett's constants. Overall, good correlations between all properties and the different types of σ constants were obtained, except for the σ I constants, which are related to inductive effects. This scenario suggests that resonance is the main factor controlling electron donation and withdrawal effects. We found that substituent groups with large σ values can produce higher photovoltaic efficiencies. It was also found that electron-withdrawing groups (EWGs) reduced E g and ∆ E considerably compared to the unsubstituted DPP-H. Moreover, for every decrease (increase) in the values of a given optoelectronic property of DPP-X1 systems, a more significant decrease (increase) in the same values was observed for the DPP-X2 , thus showing that the addition of the second substituent results in a more extensive influence on all electronic properties. For the exciton binding energies, an unsupervised machine learning algorithm identified groups of substituents characterized by average values (centroids) of Hammett's constants that can drive the search for new DDP-derived materials. Our work presents a promising approach by applying HT on molecular engineering DPP-based molecules and other conjugated molecules for applications on organic optoelectronic devices.

2.
J Mol Model ; 29(7): 215, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347316

RESUMO

CONTEXT: Recently, a new 2D carbon allotrope named biphenylene network (BPN) was experimentally realized. Here, we use density functional theory (DFT) calculations to study its boron nitride analogue sheet's structural, electronic, and optical properties (BN-BPN). Results suggest that BN-BPN has good structural and dynamic stabilities. It also has a direct bandgap of 4.5 eV and significant optical activity in the ultraviolet range. BN-BPN Young's modulus varies between 234.4[Formula: see text]273.2 GPa depending on the strain direction. METHODS: Density functional theory (DFT) simulations for the electronic and optical properties of BN-BPN were performed using the CASTEP package within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) and the hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). For convenience, the mechanical properties were carried out using the DFT approach implemented in the SIESTA code, also within the scope of the GGA/PBE method. We used the double-zeta plus polarization (DZP) for the basis set in these cases. Moreover, the norm-conserving Troullier-Martins pseudopotential was employed to describe the core electrons.


Assuntos
Carbono , Eletrônica , Módulo de Elasticidade , Elétrons
3.
J Mol Graph Model ; 105: 107869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667864

RESUMO

The objective of this work, is to study adamantanes and to tune their bandgap, since pure adamantane is considered as an insulator due to its high bandgap energy. For this, we doped adamantane with oxygen and sulfur atoms, thus obtaining 730 different structures with double bonds and 730 different structures with single bonds, for a total of 1460 structures, and compared their properties. Among all, 31 molecules were selected that best represented the reduced bandgap behavior. The calculations with greater precision in its results were made using the Local Density Approximation (LDA), in the Density-Functional Theory (DFT) formalism, with PWC functional and TNP basis set. The electronic and optical properties were analyzed, by calculating the energy gap and absorption spectrum. Importantly, we observed that molecules doped with sulfur atoms (double bonds) had their energy gap reduced significantly compared to molecules doped with sulfur and/or oxygen atom with single bonds and pristine adamantane. It was found that in the absorption spectrum, the sulfur-doped structures had their spectrum shifted to the visible region, a fact that becomes relevant for potential dyes and optoelectronic applications. From the seven selected functionalized adamantanes (ADD-04, ADD-05, ADD-07, ADD-19, ADD-20, ADD-41, and ADD-48), any of these could be used as a dye. However, the ADD-20 molecule in particular, which presented optical absorption near (RGB) primary colors, could indicate a potential quantum dot material for application in developing screens of various electronic devices.


Assuntos
Adamantano , Oxigênio , Enxofre
4.
J Mol Graph Model ; 103: 107820, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33418467

RESUMO

In this paper, we report structural, electronic and optical properties of cubane (C8H8) and cubanoids (cubane-like molecules) using Density Functional Theory (DFT). The cubanoids are cubanes for which Carbon atoms have been substituted by Nitrogen (N), Phosphorus (P), Boron (B), Silicon (Si), Arsenic (As), Antimony (Sb) or Bismuth (Bi) atoms. These molecules presented exceptional stability with several different symmetry point groups, being the majority Td. All calculated vibrational frequencies are positive for any studied molecules indicating that all these structures are in a stable state. The HOMO-LUMO gaps and DOS were calculated converged towards to values between 1.87 eV and 5.61 eV, actually showing promising electronic properties (Just for comparison, the cubane energy gap is 7.50 eV). The optical absorptions were also calculated for the cubanoid structure using the Time-Dependent Density Functional Theory (TD-DFT). Their dependence on the wavelength is analyzed, where five of theses structures absorb on the visible region. Finally, the extrapolation of thermodynamic properties indicates that these cubanoid could be potentially synthesized spontaneously, where four structures, the synthesis would occur for temperatures below 400 K, while for Si4Bi4H4 structure, the synthesis would occur at room temperature.


Assuntos
Teoria Quântica , Vibração , Teoria da Densidade Funcional , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
5.
Polymers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861628

RESUMO

Chemical degradation is a major disadvantage in the development of organic semiconductors. This work proposes the manufacture and characterization of organic semiconductor membranes in order to prevent semiconductor properties decreasing. Semiconductor membranes consisting of Nylon-11 and particles of π-conjugated molecular semiconductors were manufactured by high-vacuum evaporation followed by thermal relaxation. Initially, and with the aim of obtaining semiconductor particles, bulk heterojunction (BHJ) was carried out using green chemistry techniques between the zinc phthalocyanine (ZnPc) and the zinc hexadecafluoro-phthalocyanine (F16ZnPc) as n-type molecular semiconductors with the p-type molecular semiconductor dibenzotetrathiafulvalene (DBTTF). Consequently, the π-conjugated semiconductors particles were embedded in a Nylon-11 matrix and characterized, both structurally and considering their optical and electrical properties. Thin films of these materials were manufactured in order to comparatively study the membranes and precursor semiconductor particles. The membranes presented bandgap (Eg) values that were lower than those obtained in the films, which is an indicator of an improvement in their semiconductor capacity. Finally, the membranes were subjected to accelerated lighting conditions, to determine the stability of the polymer and the operating capacity of the membrane. After fatigue conditions, the electrical behavior of the proposed semiconductor membranes remained practically unaltered; therefore, they could have potential applications in molecular electronics. The chemical stability of membranes, which did not degrade in their polymer compound, nor in the semiconductor, was monitored by IR spectroscopy.

6.
Molecules ; 23(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587345

RESUMO

A new series of Fischer carbenes have been synthetized and examined as hole-transporting or electron-transporting layers (HTLs or ETLs) in the fabrication of organic solar cells (OSCs). The synthesis of three Fischer aminocarbene complexes with the general formula [Cr(CO)5{C(NHCH2)Ar}] (Ar = 2-pyridyl (3a), 3-pyridyl (3b) and 4-pyridyl (3c)) is reported. The molecular structure of complex 3b has been confirmed by X-ray analysis. In order to study the possible applications of the three Fischer aminocarbenes in OSCs, thin films of these complexes were prepared using a vacuum deposition process. These organometallic films were chemically and morphologically characterized by IR spectroscopy, SEM, AFM and XRD. According to the IR and Tauc analysis, the vacuum deposition process generates thin films free of impurities with an activation energy of 4.0, 2.7 and 2.1 eV for 3a, 3b y 3c, respectively. The UV-vis spectra of the amorphous aminocarbene films show that they are practically transparent to the visible radiation of the electromagnetic spectrum. This is due to the fact that their absorption is located mainly in the ultraviolet range. Two OSCs with bulk-heterojunction configuration were manufactured in order to prove the use of the aminocarbenes as ETL o HTL. The aminocarbene [Cr(CO)5{C(NHCH2) 4-pyridyl}] (3c) proved to be suitable as ETL with a fill factor (FF) of 0.23 and a short circuit current density (JSC) of 1.037 mA/cm².


Assuntos
Alcinos/química , Dioxolanos/química , Compostos Organometálicos/síntese química , Cristalografia por Raios X , Transporte de Elétrons , Estrutura Molecular , Compostos Organometálicos/química , Energia Renovável , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA