Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(4): 731-741, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37195555

RESUMO

Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) is a cosmopolitan fungus not only pathogenic to insect and nematode hosts but also to other fungi. Although having one organism with multiple effects would be desirable in a biocontrol strategy, few studies have looked at the multiple roles one strain could play. This work shows how three strains of P. lilacinum, previously proven to be entomopathogenic to leaf-cutter ants (LCA), could degrade several strains of Leucoagaricus sp., the fungus cultivated by LCA as their food source. We isolated four strains of Leucoagaricus sp. from Acromyrmex and Atta LCA species, and we determined their species molecularly, as well as their clade identity (Leucoagaricus gongylophorus, clade-A). We observed the effects on growth rates on Petri dishes and the interaction of microscopic structures of both fungi on slides. All three P. lilacinum strains inhibited the growth of L. gongylophorus. They also degraded all L. gongylophorus isolated from the Acromyrmex species, causing hyphae expansion and degradation of the cell wall. However, only one of them succeeded in degrading the L. gongylophorus strain isolated from the Atta species. The results confirm the damage to the hyphae of ant cultivars and highlight the need for future studies that reveal whether such behavior is due to P. lilacinum's mycoparasitic behavior. Using a single P. lilacinum strain with a dual function that includes the degradation of the cultivar of LCA of both genera would be a very promising strategy for the biocontrol of one of the worst herbivore pests in the Neotropics.


Assuntos
Formigas , Hypocreales , Animais
2.
Fungal Biol ; 127(1-2): 845-853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36746556

RESUMO

A new species from the fungal genus Tolypocladium (Hypocreales: Ophiocordycipitaceae) that infects Stratiomyidae larva from the genus Hylorops is described: Tolypocladium valdiviae Gallardo-Pillancari, Montalva & González. The description is based on both genomic data and morphological characteristics. The sexual stage of T. valdiviae presents fleshy and visible stromata; unlike Tolypocladium ophioglossoides, it is smaller and emerges directly from its host and resembles Tolypocladium longisegmentis and Tolypocladium capitatum, both of which are parasites of deer truffle fungi of the genus Elaphomyces (Ascomycota: Eurotiales). In the anamorphic state, T. valdiviae presents conidiogenous cells similar in shape and arrangement to those of Tolypocladium inflatum, however T. valdiviae produces larger conidiogenous cells and, occasionally, produces chlamydospores. Phylogenetic evidence suggested that T. valdiviae is in a clade close to T. longisegmentis, T. inflatum and T. ophioglossoides, species also recognized to be parasites of fungi of the genus Elaphomyces. The new species is known so far only from Valdivia, southern Chile.


Assuntos
Dípteros , Hypocreales , Animais , Larva , Filogenia , Chile , Hypocreales/genética
3.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675931

RESUMO

Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA