RESUMO
Hosts can be manipulated by parasites to move to locations advantageous for onward transmission. To investigate the role of behavioral manipulation in creating transmission hotspots, we studied the distribution of zombie turtle ants in the Amazon rainforest. The turtle ant Cephalotes atratus nests and mostly forages in the canopy, but is found at the base of trees when infected with the zombie ant fungus Ophiocordyceps kniphofioides. We found 626 infected cadavers on 14.8% of 162 trees sampled. Cadavers were highly aggregated on the surface of the trees, explained by behavioral observations indicating infected ants as slightly attracted to zombie ant cadavers on a tree. From 1,726 h of camera footage, we recorded the removal of three zombie ant cadavers by live ants. The number of removals compared to the density of infected individuals indicates the base of a tree as an escape from the evolved ability of social insects to recognize and treat disease inside the nest, allowing the parasite to continuously remain in the environment.
Assuntos
Formigas/fisiologia , Interações Hospedeiro-Patógeno , Hypocreales/fisiologia , Animais , Formigas/microbiologia , Brasil , Comportamento Social , ÁrvoresRESUMO
The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and ranging from the American temperate to the Neotropical region. Our work thus provides important insights into the widespread distribution of Actinobacteria and hymenopteran insects associations, while also pointing at novel resources that could be targeted for the discovery of active natural products with great potential in medical and biotechnological applications.
RESUMO
It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism.
Assuntos
Formigas/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Animais , Formigas/fisiologia , Ecossistema , Interações Hospedeiro-Patógeno , Laboratórios , Comportamento SocialRESUMO
Ophiocordyceps unilateralis (Ascomycota: Hypocreales) is a specialized parasite that infects, manipulates and kills formicine ants, predominantly in tropical forest ecosystems. We have reported previously, based on a preliminary study in remnant Atlantic Forest in Minas Gerais (Brazil), that O. unilateralis represents a species complex. On each of the four species of infected carpenter ant (Camponotus) collected, the fungus-characterized macroscopically by a single stalk arising from the dorsal neck region on which the sexual structures (stromatal plates) are borne laterally-can readily be distinguished both microscopically and functionally. Here, we describe and discuss the biology, life cycle and infection strategies of O. unilateralis s.l. and hypothesize that there may be hundreds of species within the complex parasitizing formicine ants worldwide. We then address the diversity within related hypocrealean fungi, with particular reference to symbionts (mutualists through to parasites), and argue that the widely-quoted total of extant fungi (1.5 million species) may be grossly underestimated.