Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
2.
Front Cell Dev Biol ; 12: 1357862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487272

RESUMO

Neurodevelopmental disorders are characterized by alterations in the development of the cerebral cortex, including aberrant changes in the number and function of neural cells. Although neurogenesis is one of the most studied cellular processes in these pathologies, little evidence is known about glial development. Genetic association studies have identified several genes associated with neurodevelopmental disorders. Indeed, variations in the PTPRD gene have been associated with numerous brain disorders, including autism spectrum disorder, restless leg syndrome, and schizophrenia. We previously demonstrated that constitutive loss of PTPRD expression induces significant alterations in cortical neurogenesis, promoting an increase in intermediate progenitors and neurons in mice. However, its role in gliogenesis has not been evaluated. To assess this, we developed a conditional knockout mouse model lacking PTPRD expression in telencephalon cells. Here, we found that the lack of PTPRD in the mouse cortex reduces glial precursors, astrocytes, and oligodendrocytes. According to our results, this decrease in gliogenesis resulted from a reduced number of radial glia cells at gliogenesis onset and a lower gliogenic potential in cortical neural precursors due to less activation of the JAK/STAT pathway and reduced expression of gliogenic genes. Our study shows PTPRD as a regulator of the glial/neuronal balance during cortical neurodevelopment and highlights the importance of studying glial development to understand the etiology of neurodevelopmental diseases.

3.
J Neurochem ; 168(1): 3-25, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055776

RESUMO

Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1ß, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.


Assuntos
Vesículas Extracelulares , Esclerose Múltipla , Remielinização , Humanos , Microglia/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Esclerose Múltipla/metabolismo
4.
Mol Neurobiol ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999871

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.

5.
Neuropeptides ; 102: 102385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837805

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compact (SNpc), and no effective treatment has yet been established to prevent PD. Neurotrophic factors, such as cerebral dopamine neurotrophic factor (CDNF), have shown a neuroprotective effect on dopaminergic neurons. Previously, we developed a cell-penetrating-peptide-based delivery system that includes Asn194Lys mutation in the rabies virus glycoprotein-9R peptide (mRVG9R), which demonstrated a higher delivery rate than the wild-type. In this study, using a mouse PD-like model, we evaluated the intrastriatal mRVG9R-KP-CDNF gene therapy through motor and cognitive tests and brain cell analysis. The mRVG9R-KP-CDNF complex was injected into the striatum on days 0 and 20. To induce the PD-like model, mice were intraperitoneally administered Paraquat (PQ) twice a week for 6 weeks. Our findings demonstrate that mRVG9R-KP-CDNF gene therapy effectively protects brain cells from PQ toxicity and prevents motor and cognitive dysfunction in mice. We propose that the mRVG9R-KP-CDNF complex inhibits astrogliosis and microglia activation, safeguarding dopaminergic neurons and oligodendrocytes from PQ-induced damage. This study presents an efficient CDNF delivery system, protecting neurons and glia in the nigrostriatal pathway from PQ-induced damage, which is known to lead to motor and cognitive dysfunction in neurodegenerative diseases such as PD.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Substância Negra , Modelos Animais de Doenças , Neurônios Dopaminérgicos
6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686181

RESUMO

Melatonin is a hormone synthesized by the pineal gland with neuroprotective and neurodevelopmental effects. Also, melatonin acts as an antidepressant by modulating the generation of new neurons in the dentate gyrus of the hippocampus. The positive effects of melatonin on behavior and neural development may suggest it is used for reverting stress but also for the alterations produced by chemotherapeutic drugs influencing behavior and brain plasticity. In this sense, temozolomide, an alkylating/anti-proliferating agent used in treating brain cancer, is associated with decreased cognitive functions and depression. We hypothesized that melatonin might prevent the effects of temozolomide on depression- and anxiety-like behavior by modulating some aspects of the neurogenic process in adult Balb/C mice. Mice were treated with temozolomide (25 mg/kg) for three days of two weeks, followed by melatonin (8 mg/kg) for fourteen days. Temozolomide produced short- and long-term decrements in cell proliferation (Ki67-positive cells: 54.89% and 53.38%, respectively) and intermediate stages of the neurogenic process (doublecortin-positive cells: 68.23% and 50.08%, respectively). However, melatonin prevented the long-term effects of temozolomide with the increased number of doublecortin-positive cells (47.21%) and the immunoreactivity of 2' 3'-Cyclic-nucleotide-3 phosphodiesterase (CNPase: 82.66%), an enzyme expressed by mature oligodendrocytes, in the hilar portion of the dentate gyrus. The effects of melatonin in the temozolomide group occurred with decreased immobility in the forced swim test (45.55%) but not anxiety-like behavior. Thus, our results suggest that melatonin prevents the harmful effects of temozolomide by modulating doublecortin cells, hilar oligodendrocytes, and depression-like behavior tested in the forced swim test. Our study could point out melatonin's beneficial effects for counteracting temozolomide's side effects.


Assuntos
Depressão , Melatonina , Animais , Camundongos , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Proteínas do Domínio Duplacortina , Melatonina/farmacologia , Camundongos Endogâmicos BALB C , Neurônios , Temozolomida/efeitos adversos , Temozolomida/farmacologia
7.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268283

RESUMO

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Assuntos
Lesões Encefálicas , Substância Branca , Recém-Nascido , Humanos , Gravidez , Feminino , Oxigênio/metabolismo , Doenças Neuroinflamatórias , Recém-Nascido Prematuro , Bainha de Mielina/metabolismo , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Lesões Encefálicas/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675255

RESUMO

Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs.


Assuntos
Receptor com Domínio Discoidina 1 , Receptores Proteína Tirosina Quinases , Ratos , Humanos , Animais , Receptor com Domínio Discoidina 1/metabolismo , Ligantes , Colágeno Tipo IV/metabolismo , Oligodendroglia/metabolismo
9.
Mol Neurobiol ; 60(4): 1949-1963, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36595194

RESUMO

Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.


Assuntos
Astrócitos , Deficiências de Ferro , Humanos , Proteômica , Oligodendroglia/metabolismo , Metabolismo Energético , Metaboloma
11.
ASN Neuro ; 14: 17590914221118502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938615

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce de novo myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.


Assuntos
Esclerose Múltipla , Remielinização , Axônios , Humanos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Remielinização/fisiologia
12.
Brain Sci ; 12(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35741573

RESUMO

The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.

13.
Biomolecules ; 12(5)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625583

RESUMO

Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos/fisiologia , alfa-Sinucleína/metabolismo
14.
Saúde Pesqui. (Online) ; 15(2): e10469, abr./jun. 2022.
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1368506

RESUMO

O objetivo deste estudo foi avaliar os efeitos duradouros de dois tipos de estresse sobre o corpo caloso (CC). Foram estudados 42 ratos Wistar machos divididos aleatoriamente em três grupos: Grupo Controle (GC), Estresse Físico (EF, imobilização) e Estresse Psicológico (EP, exposição ao predador). Os procedimentos de estresse ocorreram durante três dias consecutivos na idade juvenil (P25-P27) e foram analisados na idade adulta (P74). Os cérebros foram coletados, processados com a técnica de Klüver-Barrera, e secções foram analisadas por meio de morfometria. Os resultados demonstraram que não houve alterações em aspectos gerais como peso dos animais, e histológicos como espessura do CC e quantidade dos núcleos gliais nesta região. O estudo sugere que os efeitos duradouros de ambos os modelos de estresse juvenil de curta frequência (3 dias) e intensidade (90 minutos/EF e 20 minutos/EP) não foram nem prejudiciais e nem protetores, o que pode ser considerado uma adaptação positiva.


The current study evaluates the lasting effects of two types of stress on the corpus callosum (CC). Forty-two male Wistar rats were randomly divided into three groups: Control Group (CG), Physical Stress (FS, immobilization) and Psychological Stress (PS, exposure to predators). Stress procedures occurred for three consecutive days at the juvenile stage (P25-P27) and analyzed at the adult age (P74); brains were retrieved and processed by Klüver-Barrera technique and sections were analyzed by morphometry. Results showed that there were no changes in the general aspects such as animal weight, and in the histological aspects such as CC thickness and quantity of the region´s glia nuclei. Current research suggests that the lasting effects of both models of juvenile stress of short frequency (3 days) and intensity (90 minutes/FS and 20 minutes/PS) were neither detrimental nor protective, featuring a positive adaptation.

15.
Methods Mol Biol ; 2343: 191-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34473323

RESUMO

Alzheimer's disease (AD) is a degenerative cognitive condition that affects individuals with an increasing prevalence in older age groups. There are currently five drugs on the market for AD but no new effective ones have been discovered for decades. There has been increasing interest in the use of natural remedies such as special diets and plant extracts but these require further study. Based on the known effects on white matter and neuronal conductance in Alzheimer's disease, we present a protocol for proteomic analysis of myelin-enriched brain fractions as a way of identifying potential biomarkers of efficacy. This fingerprint could be used in screening assays for novel compounds for treatment of AD.


Assuntos
Doença de Alzheimer , Proteômica , Substância Branca , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Biomarcadores/análise , Humanos , Bainha de Mielina , Proteoma
16.
Front Physiol ; 12: 740939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744783

RESUMO

Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain's response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain's ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.

17.
J Am Stat Assoc ; 116(534): 457-470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354320

RESUMO

Scientists often embed cells into a lower-dimensional space when studying single-cell RNA-seq data for improved downstream analyses such as developmental trajectory analyses, but the statistical properties of such nonlinear embedding methods are often not well understood. In this article, we develop the exponential-family SVD (eSVD), a nonlinear embedding method for both cells and genes jointly with respect to a random dot product model using exponential-family distributions. Our estimator uses alternating minimization, which enables us to have a computationally efficient method, prove the identifiability conditions and consistency of our method, and provide statistically principled procedures to tune our method. All these qualities help advance the single-cell embedding literature, and we provide extensive simulations to demonstrate that the eSVD is competitive compared to other embedding methods. We apply the eSVD via Gaussian distributions where the standard deviations are proportional to the means to analyze a single-cell dataset of oligodendrocytes in mouse brains. Using the eSVD estimated embedding, we then investigate the cell developmental trajectories of the oligodendrocytes. While previous results are not able to distinguish the trajectories among the mature oligodendrocyte cell types, our diagnostics and results demonstrate there are two major developmental trajectories that diverge at mature oligodendrocytes. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplementary materials.

18.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1579-1586, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33751207

RESUMO

Glutamatergic neurotransmission dysfunction and the early involvement of the hippocampus have been proposed to be important aspects of the pathophysiology of schizophrenia. Here, we performed proteomic analysis of hippocampus postmortem samples from schizophrenia patients as well as neural cells-neurons and oligodendrocytes-treated with MK-801, an NMDA receptor antagonist. There were similarities in processes such as oxidative stress and apoptotic process when comparing hippocampus samples with MK-801-treated neurons, and in proteins synthesis when comparing hippocampus samples with MK-801-treated oligodendrocytes. This reveals that studying the effects of glutamatergic dysfunction in different neural cells can contribute to a better understanding of what it is observed in schizophrenia patients' postmortem brains.


Assuntos
Hipocampo , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Maleato de Dizocilpina/uso terapêutico , Hipocampo/metabolismo , Humanos , Neurônios , Oligodendroglia , Proteômica , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/metabolismo
19.
Neurosci Lett ; 750: 135764, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621639

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in the world. Studies of human AD brains show abnormalities in the white matter and reduction of myelin and oligodendrocyte markers. It has been proposed that oligodendrocyte progenitor cells (OPCs) present in the adult brain are a potential source for re-myelination, through proliferation and differentiation into mature oligodendrocytes. Bexarotene, a Retinoid X Receptor agonist, has been demonstrated to reverse behavioral deficits and to improved synaptic transmission and plasticity in murine models of AD, which was associated with the reduction of soluble Aß peptides. In the present study, we analyzed changes in the expression of oligodendrocyte lineage markers following oral administration of Bexarotene in a very old (24-month-old) triple transgenic mouse model of AD (3xTg-AD), for which early demyelination changes have been previously described. Bexarotene increased the expression of OPCs and intermediate oligodendrocyte progenitors (Olig2+ and O4+), and increased the number of mitotic (O4+) and myelinating mature (MBP+) oligodendrocytes. We clearly show that Bexarotene promotes re-myelination which might be important for the previously observed cognitive improvement of 3xTg-AD mice treated with this drug.


Assuntos
Doença de Alzheimer/metabolismo , Bexaroteno/farmacologia , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligodendroglia/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Presenilina-1/genética , Proteínas tau/genética
20.
Curr Neuropharmacol ; 19(1): 24-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32077828

RESUMO

Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Sistema Nervoso Central , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Toxina Shiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA