Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 17(1): 17, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27113933

RESUMO

BACKGROUND: Odor transduction, occurring in the chemosensory cilia of vertebrate olfactory sensory neurons, is triggered by guanosine triphosphate-coupled odor receptors and mediated by a cyclic adenosine monophosphate (cAMP) signaling cascade, where cAMP opens cationic non-selective cyclic nucleotide-gated (CNG) channels. Calcium enters through CNG gates Ca(2+)-activated Cl(-) channels, allowing a Cl(-) inward current that enhances the depolarization initiated by the CNG-dependent inward current. The anoctamin channel 2, ANO2, is considered the main Ca(2+)-activated Cl(-) channel of olfactory transduction. Although Ca(2+)-activated Cl(-) channel-dependent currents in olfactory sensory neurons were reported to be suppressed in ANO2-knockout mice, field potentials from their olfactory epithelium were only modestly diminished and their smell-dependent behavior was unaffected, suggesting the participation of additional Ca(2+)-activated Cl(-) channel types. The Bestrophin channel 2, Best2, was also detected in mouse olfactory cilia and ClCa4l, belonging to the ClCa family of Ca(2+)-activated Cl(-) channels, were found in rat cilia. Best2 knock-out mice present no electrophysiological or behavioral impairment, while the ClCa channels have not been functionally studied; therefore, the overall participation of all these channels in olfactory transduction remains unresolved. RESULTS: We explored the presence of detectable Ca(2+)-activated Cl(-) channels in toad olfactory cilia by recording from inside-out membrane patches excised from individual cilia and detected unitary Cl(-) current events with a pronounced Ca(2+) dependence, corresponding to 12 and 24 pS conductances, over tenfold higher than the aforementioned channels, and a approx. fivefold higher Ca(2+) affinity (K0.5 = 0.38 µM). Remarkably, we observed immunoreactivity to anti-ClCa and anti-ANO2 antibodies in the olfactory cilia, suggesting a possible cooperative function of both channel type in chemotransduction. CONCLUSIONS: These results are consistent with a novel olfactory cilia channel, which might play a role in odor transduction.


Assuntos
Proteínas de Anfíbios/metabolismo , Canais de Cloreto/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Anuros , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Cílios/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Potenciais da Membrana/fisiologia , Mucosa Olfatória/metabolismo , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA