Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Am J Reprod Immunol ; 91(6): e13886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031603

RESUMO

PROBLEM: The luteinizing hormone (LH), produced by gonadal and nongonadal cells in the anterior pituitary gland play a critical role in human sexual development and reproduction. It is required for the induction of ovulation in females and sex steroid hormone production in both males and females. It is also an important player in early pregnancy events in oviducts and in absence of LH signalling, the uterus cannot initiate pregnancy. LH works through its receptor LHCGR. Therefore, it is quite important to figure out those mutations that have the potential to affect the structure and function of both LH and LHR. MATERIALS AND METHODS: Various in silico tools were employed in the study for the data mining of SNPs and predicting their possible impact on the structure and function of the protein. ConSurf analysis predicted V454I and I161K are exposed residues in the 2D structure of protein and highly conserved in protein structure. PSIPRED and Swiss Modeller were employed to predict the 2D and 3D structure of mutated receptor protein. FT site server predicted both substitutions were involved in the ligand-binding site RESULTS: By present analysis, we have found that R59G in LHα, Q74R and T78N in LHß and V454I and I161K in LHCGR are the most deleterious nsSNPs affecting the structure and function of the protein. CONCLUSION: These SNPs are still uncharacterised; hence providing a baseline for validation of their association with the susceptibility of diseases and develop personalised therapeutics.


Assuntos
Biologia Computacional , Hormônio Luteinizante , Polimorfismo de Nucleotídeo Único , Receptores do LH , Feminino , Humanos , Masculino , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Hormônio Luteinizante/metabolismo , Modelos Moleculares , Mutação/genética , Conformação Proteica , Receptores do LH/genética , Receptores do LH/metabolismo
2.
Int J Biol Macromol ; 275(Pt 2): 133710, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977046

RESUMO

Delta-opioid receptor protein (OPRD1) is one of the potential targets for treating pain. The presently available opioid agonists are known to cause unnecessary side effects. To discover a novel opioid agonist, our research group has synthesized a chimeric peptide MCRT and proved its potential activity through in vivo analysis. Non-synonymous SNPs (nsSNPs) missense mutations affect the functionality and stability of proteins leading to diseases. The current research was focused on understanding the role of MCRT in restoring the binding tendency of OPRD1 nsSNPs missense mutations on dynamic nature in comparison with Deltorphin-II and morphiceptin. The deleterious effects of nsSNPs were analyzed using various bioinformatics tools for predicting structural, functional, and oncogenic influence. The shortlisted nine nsSNPs were predicted for allergic reactions, domain changes, post-translation modification, multiple sequence alignment, secondary structure, molecular dynamic simulation (MDS), and peptide docking influence. Further, the docked complex of three shortlisted deleterious nsSNPs was analyzed using an MDS study, and the highly deleterious shortlisted nsSNP A149T was further analyzed for higher trajectory analysis. MCRT restored the binding tendency influence caused by nsSNPs on the dynamics of stability, functionality, binding affinity, secondary structure, residues connection, motion, and folding of OPRD1 protein.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Receptores Opioides delta , Receptores Opioides delta/genética , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Humanos , Simulação por Computador , Sequência de Aminoácidos , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/farmacologia
3.
Heliyon ; 10(12): e33110, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021990

RESUMO

Background: The Alternative Lengthening of Telomeres (ALT) pathway represents a non-canonical mechanism of telomere maintenance that operates independently of the conventional telomerase activity. The three biologically significant proteins, designated as SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1), DAXX (Death domain-associated protein 6) and ATRX (alpha-thalassemia/mental retardation, X-linked) are associated with ALT in certain cancer types. The purpose of this study was to identify the most high-risk nsSNPs (non-synonymous Single Nucleotide Polymorphisms) within these three genes and assess their impacts on the structure and function of the proteins they encode. Methods: The reported genetic polymorphisms of SMARCAL1, DAXX and ATRX genes were retrieved from the Ensembl database. Later, various computational tools like PROVEAN, PolyPhen2, SNPs and GO, SNAP2, Predict-SNP, Panther and PMut were used to predict the most deleterious nsSNPs. MutPred was used to understand the underlying molecular reasons of those nsSNPs being deleterious, followed by prediction of Post Translational Modification Sites (PTMs) using ModPred. I-Mutant and MUpro were used to predict the effect of SNP on energy stability. Later, 3D clustering analysis was done using Mutation 3D server. Moreover, ConSurf was utilized to identify the conservation scores of wild-type amino acids. Additionally, the NCBI conserved domain search tool was employed to pinpoint conserved domains within these three proteins. Project-Hope helped for biophysical validation, followed by prediction of these genes' interaction and function by using GeneMANIA. Result: Analysis on SMARCAL1 protein revealed that among 665 nsSNPs, four were identified as the most deleterious: L578S, T581S, P582A, and P582S. Similarly, within the DAXX protein, among a pool of 480 nsSNPs, P284S, R230C, and R230S were found out to be the most deleterious variants. In case of ATRX protein, V178D, R246C, and V277G, from the total of 1009 nsSNPs, were predicted to be the most deleterious. All these nsSNPs were found to occur at residue positions that are 100 % conserved within protein domains and were predicted to be most damaging from both structural and functional perspectives and highly destabilizing to their corresponding proteins. Conclusion: Computational investigation on the 3 proteins-SMARCAL1, DAXX and ATRX through different bioinformatics analysis tools concludes that the identified high risk nsSNPs of these proteins are pathogenic SNPs. These variants potentially exert functional and structural influences, thus making them valuable candidates for future genetic studies.

4.
J Appl Genet ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874855

RESUMO

Male infertility is a significant reproductive issue affecting a considerable number of couples worldwide. While there are various causes of male infertility, genetic factors play a crucial role in its development. We focused on identifying and analyzing the high-risk nsSNPs in DNAH1 and DNAH17 genes, which encode proteins involved in sperm motility. A total of 20 nsSNPs for DNAH1 and 10 nsSNPs for DNAH17 were analyzed using various bioinformatics tools including SIFT, PolyPhen-2, CADD, PhD-SNPg, VEST-4, and MutPred2. As a result, V1287G, L2071R, R2356W, R3169C, R3229C, E3284K, R4096L, R4133C, and A4174T in DNAH1 gene and C1803Y, C1829Y, R1903C, and L3595P in DNAH17 gene were identified as high-risk nsSNPs. These nsSNPs were predicted to decrease protein stability, and almost all were found in highly conserved amino acid positions. Additionally, 4 nsSNPs were observed to alter post-translational modification status. Furthermore, the interaction network analysis revealed that DNAH1 and DNAH17 interact with DNAH2, DNAH3, DNAH5, DNAH7, DNAH8, DNAI2, DNAL1, CFAP70, DNAI3, DNAI4, ODAD1, and DNAI7, demonstrating the importance of DNAH1 and DNAH17 proteins in the overall functioning of the sperm motility machinery. Taken together, these findings revealed the detrimental effects of identified high-risk nsSNPs on protein structure and function and highlighted their potential relevance to male infertility. Further studies are warranted to validate these findings and to elucidate the underlying mechanisms.

5.
BMC Genom Data ; 25(1): 56, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858637

RESUMO

BACKGROUND: Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS: Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS: This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.


Assuntos
Biologia Computacional , Interleucina-1beta , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , Interleucina-1beta/genética , Mutação de Sentido Incorreto , Bases de Dados Genéticas
6.
Genomics Inform ; 22(1): 4, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38907316

RESUMO

Tumor suppressor cylindromatosis protein (CYLD) regulates NF-κB and JNK signaling pathways by cleaving K63-linked poly-ubiquitin chain from its substrate molecules and thus preventing the progression of tumorigenesis and metastasis of the cancer cells. Mutations in CYLD can cause aberrant structure and abnormal functionality leading to tumor formation. In this study, we utilized several computational tools such as PANTHER, PROVEAN, PredictSNP, PolyPhen-2, PhD-SNP, PON-P2, and SIFT to find out deleterious nsSNPs. We also highlighted the damaging impact of those deleterious nsSNPs on the structure and function of the CYLD utilizing ConSurf, I-Mutant, SDM, Phyre2, HOPE, Swiss-PdbViewer, and Mutation 3D. We shortlisted 18 high-risk nsSNPs from a total of 446 nsSNPs recorded in the NCBI database. Based on the conservation profile, stability status, and structural impact analysis, we finalized 13 nsSNPs. Molecular docking analysis and molecular dynamic simulation concluded the study with the findings of two significant nsSNPs (R830K, H827R) which have a remarkable impact on binding affinity, RMSD, RMSF, radius of gyration, and hydrogen bond formation during CYLD-ubiquitin interaction. The principal component analysis compared native and two mutants R830K and H827R of CYLD that signify structural and energy profile fluctuations during molecular dynamic (MD) simulation. Finally, the protein-protein interaction network showed CYLD interacts with 20 proteins involved in several biological pathways that mutations can impair. Considering all these in silico analyses, our study recommended conducting large-scale association studies of nsSNPs of CYLD with cancer as well as designing precise medications against diseases associated with these polymorphisms.

7.
J Genet Eng Biotechnol ; 22(2): 100378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797553

RESUMO

BACKGROUND: N-ras protein is encoded by the NRAS gene and operates as GDP-GTP-controlled on/off switching. N-ras interacts with cellular signaling networks that regulate various cellular activities including cell proliferation and survival. The nonsynonymous single nucleotide polymorphism (nsSNPs)-mediated alteration can substantially disrupt the structure and activity of the corresponding protein. N-ras has been reported to be associated with numerous diseases including cancers due to the nsSNPs. A comprehensive study on the NRAS gene to unveil the potentially damaging and oncogenic nsSNPs is yet to be accomplished. Hence, this extensive in silico study is intended to identify the disease-associated, specifically oncogenic nsSNPs of the NRAS gene. RESULTS: Out of 140 missense variants, 7 nsSNPs (I55R, G60E, G60R, Y64D, L79F, D119G, and V152F) were identified to be damaging utilizing 10 computational tools that works based on different algorithms with high accuracy. Among those, G60E, G60R, and D119G variants were further filtered considering their location in the highly conserved region and later identified as oncogenic variants. Interestingly, G60E and G60R variants were revealed to be particularly associated with lung adenocarcinoma, rhabdomyosarcoma, and prostate adenocarcinoma. Therefore, D119G could be subjected to detailed investigation for identifying its association with specific cancer. CONCLUSION: This in silico study identified the deleterious and oncogenic missense variants of the human NRAS gene that could be utilized for designing further experimental investigation. The outcomes of this study would be worthwhile in future research for developing personalized medicine.

8.
Bioinformation ; 20(3): 261-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712004

RESUMO

TYMP gene, which codes for thymidine phosphorylase (TP) is also known as platelet-derived endothelial cell growth factor (PD-ECGF). TP plays crucial roles in nucleotide metabolism and angiogenesis. Mutations in the TYMP gene can lead to Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE) syndrome, a rare genetic disorder. Our main objective was to evaluate the impact of detrimental non-synonymous single nucleotide polymorphisms (nsSNPs) on TP protein structure and predict harmful variants in untranslated regions (UTR). We employed a combination of predictive algorithms to identify nsSNPs with potential deleterious effects, followed by molecular modeling analysis to understand their effects on protein structure and function. Using 13 algorithms, we identified 119 potentially deleterious nsSNPs, with 82 located in highly conserved regions. Of these, 53 nsSNPs were functional and exposed, while 79 nsSNPs reduced TP protein stability. Further analysis of 18 nsSNPs through 3D protein structure analysis revealed alterations in amino acid interactions, indicating their potential impact on protein function. This will help in the development of faster and more efficient genetic tests for detecting TYMP gene mutations.

9.
Neurosci Lett ; 833: 137826, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38768940

RESUMO

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.


Assuntos
Polimorfismo de Nucleotídeo Único , beta-Sinucleína , beta-Sinucleína/genética , beta-Sinucleína/metabolismo , beta-Sinucleína/química , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Predisposição Genética para Doença , Mutação , Conformação Proteica
10.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675722

RESUMO

Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein-protein interactions, Kir6.2 function, and case-control studies.


Assuntos
Diabetes Mellitus , Simulação de Dinâmica Molecular , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Mutação , Predisposição Genética para Doença , Sítios de Ligação , Ligação Proteica
11.
Syst Biol Reprod Med ; 70(1): 101-112, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38630598

RESUMO

MDC1 (Mediator of DNA damage Checkpoint protein 1) functions to facilitate the localization of numerous DNA damage response (DDR) components to DNA double-strand break sites. MDC1 is an integral component in preserving genomic stability and appropriate DDR regulation. There haven't been systematic investigations of MDC1 mutations that induce cancer and genomic instability. Variations in nsSNPs have the potential to modify the protein chemistry and their function. Describing functional SNPs in disease-associated genes presents a significant conundrum for investigators, it is possible to assess potential functional SNPs before conducting larger population examinations. Multiple sequences and structure-based bioinformatics strategies were implemented in the current in-silico investigation to discern potential nsSNPs of the MDC1 genes. The nsSNPs were identified with SIFT, SNAP2, Align GVGD, PolyPhen-2, and PANTHER, and their stability was determined with MUpro. The conservation, solvent accessibility, and structural effects of the mutations were identified with ConSurf, NetSurfP-2.0, and SAAFEC-SEQ respectively. Cancer-related analysis of the nsSNPs was conducted using cBioPortal and TCGA web servers. The present study appraised five nsSNPs (P1426T, P69S, P194R, P203L, and H131Y) as probably mutilating due to their existence in highly conserved regions and propensity to deplete protein stability. The nsSNPs P194R, P203L, and H131Y were concluded as deleterious and possibly damaging from the 5 prediction tools. The functional nsSNP P194R mutation is associated with skin cutaneous melanoma while no significant records were found for other nsSNPs. The present study concludes that the highly deleterious P194R mutations can potentially induce genomic instability and contribute to various cancers' pathogenesis. Developing drugs targeting these mutations can undoubtedly be advantageous in large population-based studies, particularly in the development of precision medicine.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Polimorfismo de Nucleotídeo Único , Mutação , Biologia Computacional , Instabilidade Genômica , Proteínas de Ciclo Celular , Proteínas Adaptadoras de Transdução de Sinal
12.
J Biomol Struct Dyn ; 42(3): 1518-1532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37173831

RESUMO

Cytochrome P450 oxidoreductase (POR) protein is essential for steroidogenesis, and POR gene mutations are frequently associated with P450 Oxidoreductase Deficiency (PORD), a disorder of hormone production. To our knowledge, no previous attempt has been made to identify and analyze the deleterious/pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) in the human POR gene through an extensive computational approach. Computational algorithms and tools were employed to identify, characterize, and validate the pathogenic SNPs associated with certain diseases. To begin with, all the high-confidence SNPs were collected, and their structural and functional impacts on the protein structures were explored. The results of various in silico analyses affirm that the A287P and R457H variants of POR could destabilize the interactions between the amino acids and the hydrogen bond networks, resulting in functional deviations of POR. The literature study further confirms that the pathogenic mutations (A287P and R457H) are associated with the onset of PORD. Molecular dynamics simulations (MDS) and essential dynamics (ED) studies characterized the structural consequences of prioritized deleterious mutations, representing the structural destabilization that might disrupt POR biological function. The identified deleterious mutations at the cofactor's binding domains might interfere with the essential interactions between the protein and cofactors, thus inhibiting POR catalytic activity. The consolidated insights from the computational analyses can be used to predict potential deleterious mutants and understand the disease's pathological basis and the molecular mechanism of drug metabolism for the application of personalized medication. HIGHLIGHTSNADPH cytochrome P450 oxidoreductase (POR) mutations are associated with a broad spectrum of human diseasesIdentified and analyzed the most deleterious nsSNPs of POR through the sequence and structure-based prediction toolsInvestigated the structural and functional impacts of the most significant mutations (A287P and R457H) associated with PORDMolecular dynamics and PCA-based FEL analysis were utilized to probe the mutation-induced structural alterations in PORCommunicated by Ramaswamy H. Sarma.


Assuntos
Sistema Enzimático do Citocromo P-450 , Polimorfismo de Nucleotídeo Único , Humanos , Sistema Enzimático do Citocromo P-450/química , Mutação , Simulação de Dinâmica Molecular
13.
J Biomol Struct Dyn ; 42(7): 3700-3711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37222604

RESUMO

Lysosomal enzymes degrade cellular macromolecules, while their inactivation causes human hereditary metabolic disorders. Mucopolysaccharidosis IVA (MPS IVA; Moquio A syndrome) is one of the lysosomal storage disorders caused by a defective Galactosamine-6-sulfatase (GalN6S) enzyme. In several populations, disease incidence is elevated due to missense mutations brought on by non-synonymous allelic variation in the GalN6S enzyme. Here, we studied the effect of non-synonymous single nucleotide polymorphism (nsSNPs) on the structural dynamics of the GalN6S enzyme and its binding with N-acetylgalactosamine (GalNAc) using all-atom molecular dynamics simulation and an essential dynamics approach. Consequently, in this study, we have identified three functionally disruptive mutations in domain-I and domain-II, that is, S80L, R90W, and S162F, which presumably contribute to post-translational modifications. The study delineated that both domains work cooperatively, and alteration in domain II (S80L, R90W) leads to conformational changes in the catalytic site in domain-I, while mutation S162F mainly provokes higher residual flexibility of domain II. These results show that these mutations impair the hydrophobic core, implying that Morquio A syndrome is caused by misfolding of the GalN6S enzyme. The results also show the instability of the GalN6S-GalNAc complex upon substitution. Overall, the structural dynamics resulting from point mutations give the molecular rationale for Moquio A syndrome and, more importantly, the Mucopolysaccharidoses (MPS) family of diseases, re-establishing MPS IVA as a protein-folding disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Mucopolissacaridose IV , Humanos , Mucopolissacaridose IV/genética , Acetilgalactosamina , Galactosamina , Dobramento de Proteína , Sulfatases
14.
J Biomol Struct Dyn ; 42(6): 2886-2896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37216366

RESUMO

Worldwide, the burden of chronic kidney disease (CKD) has increased rapidly and is a lethal disease. The klotho protein plays a vital role in the regulatory mechanism in the progression of CKD. Particularly the decreased expression of klothoand its genetic variations might affect the potency of drugs. This study aims to identify a new drug molecule, which works equipotential in all types of klotholike wild and mutant variants. All non-synonymous SNPs were predicted by several SNP tools. Where, two missense variants were examined as vulnerable, significantly damaging, and also involved in the structural conformational changes of the protein. Based on structure-based screening, E-pharmacophore screening, binding mode analysis, binding free energy analysis, QM/MM, and molecular dynamics analysis a lead compound (Lifechemical_F2493-2038) was identified as an effective agonistic molecule hence the identified Lifechemical_F2493-2038 compound is well bound to the wild and mutant proteins which found to increase the expression of klotho.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas Klotho , Insuficiência Renal Crônica , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
15.
Curr Issues Mol Biol ; 45(12): 9390-9412, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132435

RESUMO

The thrombopoietin receptor (MPL) gene is a critical regulator of hematopoiesis, and any alterations in its structure or function can result in a range of hematological disorders. Non-synonymous single nucleotide polymorphisms (nsSNPs) in MPL have the potential to disrupt normal protein function, prompting our investigation into the most deleterious MPL SNPs and the associated structural changes affecting protein-protein interactions. We employed a comprehensive suite of bioinformatics tools, including PredictSNP, InterPro, ConSurf, I-Mutant2.0, MUpro, Musitedeep, Project HOPE, STRING, RegulomeDB, Mutpred2, CScape, and CScape Somatic, to analyze 635 nsSNPs within the MPL gene. Among the analyzed nsSNPs, PredictSNP identified 28 as significantly pathogenic, revealing three critical functional domains within MPL. Ten of these nsSNPs exhibited high conservation scores, indicating potential effects on protein structure and function, while 14 were found to compromise MPL protein stability. Although the most harmful nsSNPs did not directly impact post-translational modification sites, 13 had the capacity to substantially alter the protein's physicochemical properties. Some mutations posed a risk to vital protein-protein interactions crucial for hematological functions, and three non-coding region nsSNPs displayed significant regulatory potential with potential implications for hematopoiesis. Furthermore, 13 out of 21 nsSNPs evaluated were classified as high-risk pathogenic variants by Mutpred2. Notably, amino acid alterations such as C291S, T293N, D295G, and W435C, while impactful on protein stability and function, were deemed non-oncogenic "passenger" mutations. Our study underscores the substantial impact of missense nsSNPs on MPL protein structure and function. Given MPL's central role in hematopoiesis, these mutations can significantly disrupt hematological processes, potentially leading to a variety of disorders. The identified high-risk pathogenic nsSNPs may hold promise as potential biomarkers or therapeutic targets for hematological diseases. This research lays the foundation for future investigations into the MPL gene's role in the realm of hematological health and diseases.

16.
Mol Cell Biochem ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117419

RESUMO

The NEK6 (NIMA-related kinase 6) serine/threonine kinase is a pivotal player in a multitude of cellular processes, including the regulation of the cell cycle and the response to DNA damage. Its significance extends to disease pathogenesis, as changes in NEK6 activity have been linked to the development of cancer. Non-synonymous single nucleotide polymorphisms (nsSNPs) in NEK6 have been linked to cancer as they alter the protein's native structure and function. The association between NEK6 activity and cancer development has prompted researchers to explore the effects of genetic variations within the NEK6 gene. Therefore, we utilized advanced computational tools to analyze 155 high-confidence nsSNPs in the NEK6 gene. From this analysis, 21 nsSNPs were identified as potentially harmful, raising concerns about their impact on NEK6 activity and cancer risk. These 21 mutations were then examined for structural alterations, and eight of nsSNPs (I51M, V76A, I134N, Y152D, R171Q, V186G, L237R, and C285S) were found to destabilize the protein. Among the destabilizing mutations screened, a specific mutation, R171Q, stood out due to its conserved nature. To understand its impact on the protein and conformation, all-atom molecular dynamics simulations (MDS) for 100 ns were performed for both Wildtype NEK6 (WT-NEK6) and R171Q. The simulations revealed that the R171Q variant was unstable and led to significant conformational changes in NEK6. This study provides valuable insights into NEK6 dysfunction caused by single amino acid alterations, offering a novel understanding of the molecular mechanisms underlying NEK6-related cancer progression.

17.
Diseases ; 11(3)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754311

RESUMO

Alpha synuclein (α-Syn) is a neuronal protein encoded by the SNCA gene and is involved in the development of Parkinson's disease (PD). The objective of this study was to examine in silico the functional implications of non-synonymous single nucleotide polymorphisms (nsSNPs) in the SNCA gene. We used a range of computational algorithms such as sequence conservation, structural analysis, physicochemical properties, and machine learning. The sequence of the SNCA gene was analyzed, resulting in the mapping of 42,272 SNPs that are classified into different functional categories. A total of 177 nsSNPs were identified within the coding region; there were 20 variants that may influence the α-Syn protein structure and function. This identification was made by employing different analytical tools including SIFT, PolyPhen2, Mut-pred, SNAP2, PANTHER, PhD-SNP, SNP&Go, MUpro, Cosurf, I-Mut, and HOPE. Three mutations, V82A, K80E, and E46K, were selected for further examinations due to their spatial positioning within the α-Syn as determined by PyMol. Results indicated that these mutations may affect the stability and function of α-Syn. Then, a molecular dynamics simulation was conducted for the SNCA wildtype and the four mutant variants (p.A18G, p.V82A, p.K80E, and p.E46K). The simulation examined temperature, pressure, density, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (Rg). The data indicate that the mutations p.V82A, p.K80E, and p.E46K reduce the stability and functionality of α-Syn. These findings highlight the importance of understanding the impact of nsSNPs on α-syn structure and function. Our results required verifications in further protein functional and case-control studies. After being verified these findings can be used in genetic testing for the early diagnosis of PD, the evaluation of the risk factors, and therapeutic approaches.

18.
J Biomol Struct Dyn ; : 1-20, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505085

RESUMO

Posttranslational protein arginylation has been shown as a key regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with macromolecules. Thus, the enzyme Arginyltransferase and its targets, are of immense interest to modulate cellular processes in the normal and diseased state. While the study on the effect of this posttranslational modification in mammalian systems gained momentum in the recent times, the detail structures of human ATE1 (hATE1) enzymes has not been investigated so far. Thus, the purpose of this study was to predict the overall structure and the structure function relationship of hATE1 enzyme and its four isoforms. The structure of four ATE1 isoforms were modelled and were docked with 3'end of the Arg-tRNAArg which acts as arginine donor in the arginylation reaction, followed by MD simulation. All the isoforms showed two distinct domains. A compact domain and a somewhat flexible domain as observed in the RMSF plot. A distinct similarity in the overall structure and interacting residues were observed between hATE1-1 and X4 compared to hATE1-2 and 5. While the putative active sites of all the hATE1 isoforms were located at the same pocket, differences were observed in the active site residues across hATE1 isoforms suggesting different substrate specificity. Mining of nsSNPs showed several nsSNPs including cancer associated SNPs with deleterious consequences on hATE1 structure and function. Thus, the current study for the first time shows the structural differences in the mammalian ATE1 isoforms and their possible implications in the function of these proteins.Communicated by Ramaswamy H. Sarma.

19.
Diagnostics (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238269

RESUMO

The human C-type lectin domain family 7 member A (CLEC7A) gene encodes a Dectin-1 protein that recognizes beta-1,3-linked and beta-1,6-linked glucans, which form the cell walls of pathogenic bacteria and fungi. It plays a role in immunity against fungal infections through pathogen recognition and immune signaling. This study aimed to explore the impact of nsSNPs in the human CLEC7A gene through computational tools (MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, SNAP, and PredictSNP) to identify the most deleterious and damaging nsSNPs. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-Mutant 2.0, ConSurf, and Project HOPE and post-translational modification analysis using MusiteDEEP. Out of the 28 nsSNPs that were found to be deleterious, 25 nsSNPs affected protein stability. Some SNPs were finalized for structural analysis with Missense 3D. Seven nsSNPs affected protein stability. Results from this study predicted that C54R, L64P, C120G, C120S, S135C, W141R, W141S, C148G, L155P, L155V, I158M, I158T, D159G, D159R, I167T, W180R, L183F, W192R, G197E, G197V, C220S, C233Y, I240T, E242G, and Y3D were the most structurally and functionally significant nsSNPs in the human CLEC7A gene. No nsSNPs were found in the predicted sites for post-translational modifications. In the 5' untranslated region, two SNPs, rs536465890 and rs527258220, showed possible miRNA target sites and DNA binding sites. The present study identified structurally and functionally significant nsSNPs in the CLEC7A gene. These nsSNPs may potentially be used for further evaluation as diagnostic and prognostic biomarkers.

20.
J Thromb Haemost ; 21(4): 800-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696179

RESUMO

BACKGROUND: Several studies have suggested Black and Hispanic hemophilia A (HA) patients in the United States suffer higher incidences of neutralizing anti-FVIII antibodies (inhibitors) than their White counterparts. The possible influence of nonsynonymous single-nucleotide polymorphisms (ns-SNPs) in the F8 gene sequence has been proposed as a possible race-associated contributing factor. Some earlier studies indicated that intron-22 inversion mutations carry a lower inhibitor risk than other mutations resulting in large F8 gene disruptions. OBJECTIVES: The objectives of the study were to test the following hypotheses: (1) The risk of developing an inhibitor differs among racial/ethnic groups in the United States, (2) specific non-HA-causing ns-SNPs in the F8 gene are correlated with inhibitor risk, and (3) inhibitor risk associated with intron-22 inversions mutations is similar to that associated with other large structural changes in the F8 gene. METHODS: Adjusted logistic regression analysis of the "My Life Our Future" database containing demographic, clinical, and F8 sequence data from >6000 mild, moderate, and severe HA participants. RESULTS: Black and Hispanic severe HA subjects had a higher inhibitor risk than non-Hispanic Whites (adjusted odds ratio = 1.65, 95% CI: 1.22-2.21 and adjusted odds ratio = 1.88, 95% CI: 1.43-2.48), confirming this racial/ethnic/medical disparity; however, F8 ns-SNPs were not associated with inhibitor development. There was no difference in inhibitor risk among severe HA subjects with an intron-22 inversion vs other large structural changes in the F8 gene. CONCLUSIONS: Nonpathogenic ns-SNPs in the F8 gene are not correlated with inhibitor risk. Inhibitor risk associated with intron-22 inversion mutations is similar to that of other large structural changes in F8 that preclude intact FVIII expression.


Assuntos
Hemofilia A , Humanos , Hemofilia A/diagnóstico , Hemofilia A/genética , Etnicidade , Fator VIII/genética , Mutação , Íntrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA