Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(21-22): 8019-8032, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655320

RESUMO

Nitroalkanes such as nitromethane, nitroethane, 1-nitropropane (1NP), and 2-nitropropane (2NP), derived from anthropogenic activities, are hazardous environmental pollutants due to their toxicity and carcinogenic activity. In nature, 3-nitropropionate (3NPA) and its derivatives are produced as a defense mechanism by many groups of organisms, including bacteria, fungi, insects, and plants. 3NPA is highly toxic as its conjugate base, propionate-3-nitronate (P3N), is a potent inhibitor of mitochondrial succinate dehydrogenase, essential to the tricarboxylic acid cycle, and can inhibit isocitrate lyase, a critical enzyme of the glyoxylate cycle. In response to these toxic compounds, several organisms on the phylogenetic scale express genes that code for enzymes involved in the catabolism of nitroalkanes: nitroalkane oxidases (NAOs) and nitronate monooxygenases (NMOs) (previously classified as nitropropane dioxygenases, NPDs). Two types of NMOs have been identified: class I and class II, which differ in structure, catalytic efficiency, and preferred substrates. This review focuses on the biochemical properties, structure, classification, and physiological functions of NMOs, and offers perspectives for their in vivo and in vitro applications. KEY POINTS: • Nitronate monooxygenases (NMOs) are key enzymes in nitroalkane catabolism. • NMO enzymes are involved in defense mechanisms in different organisms. • NMO applications include organic synthesis, biocatalysts, and bioremediation.


Assuntos
Alcanos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Filogenia
2.
Appl Microbiol Biotechnol ; 104(7): 2987-2997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060694

RESUMO

Metarhizium species are the most abundant fungi that can be isolated from soil, with a well-known biopesticide capacity. Metarhizium recognizes their hosts when the conidium interacts with insects, where the fungi are in contact with the hydrocarbons of the outermost lipid layer cuticle. These cuticular hydrocarbons comprise a mixture of n-alkanes, n-alkenes, and methyl-branched chains. Metarhizium can degrade insect hydrocarbons and use these hydrocarbons for energy production and the biosynthesis of cellular components. The metabolism of nitroalkanes involves nitronate monooxygenase activity. In this work, we isolated a family of six genes with potential nitronate monooxygenase activity from Metarhizium brunneum. The six genes were expressed in Escherichia coli, and the nitronate monooxygenase activity was verified in the recombinant proteins. Additionally, when the conidia of M. brunneum were grown in medium with nitroalkanes, virulence against Plutella xylostella increased. Furthermore, we analyzed the expression of the six Npd genes during the infection to this insect, which showed differential expression of the six Npd genes during infection.


Assuntos
Agentes de Controle Biológico/metabolismo , Dioxigenases/metabolismo , Metarhizium/enzimologia , Mariposas/microbiologia , Alcanos/metabolismo , Animais , DNA Fúngico/genética , Dioxigenases/genética , Hidrocarbonetos/metabolismo , Proteínas de Insetos/metabolismo , Metarhizium/genética , Metarhizium/patogenicidade , Controle Biológico de Vetores , Virulência/genética
3.
Eur J Med Chem ; 159: 178-186, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30292895

RESUMO

We have previously shown the antioxidant and anti-inflammatory properties of several para-substituted arylnitroalkenes. Since oxidative stress and inflammation are key processes that drive the initiation and progression of atherosclerosis, in the present work the antioxidant, anti-inflammatory and anti-atherogenic properties of an extended library of aryl-nitroaliphatic derivatives, including several newly designed nitroalkanes, was explored. The antioxidant capacity of the nitroaliphatic compounds, measured using the oxygen radical absorbance capacity assay (ORAC) showed that the p-methylthiophenyl-derivatives were about three times more effective than Trolox to prevent fluorescein oxidation, independently of the presence or the absence of the double bond next to the nitro group. The peroxyl radical scavenger capacity of the p-dimethylaminophenyl-derivatives was even higher, being the reduced form of these compounds even more active. In fact, while the antioxidant capacity of 1-dimethylamino-4-(2-nitro-1Z-ethenyl)benzene and 1-dimethylamino-4-(2-nitro-1Z-propenyl)benzene was 4.2 ±â€¯0.1 and 5.4 ±â€¯0.1 Trolox Eq/mol, respectively; ORAC values obtained with the ethyl and the propyl derivatives were 10 ±â€¯1 and 13 ±â€¯2 Trolox Eq/mol, respectively. The p-dimethylamino-derivatives, especially the nitroalkanes, were also able to prevent LDL oxidation mediated by peroxyl radicals. Oxygen consumption due to the oxidation of fatty acids was delayed in the presence of the dimethylamino substituted compounds, only the alkanes interrupted the chain of lipid oxidations decreasing the rate of oxygen consumption. Although the formation of foam cells in the presence of oxidized-LDL (oxLDL) remained unaffected, the molecules containing the dimethylamino moiety were able to decrease the expression of IL-1ß in LPS/INF-γ challenged macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Arteriosclerose/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Lipoproteínas LDL/antagonistas & inibidores , Nitrocompostos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Lipoproteínas LDL/metabolismo , Camundongos , Estrutura Molecular , Nitrocompostos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA