Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1569996

RESUMO

El estilo de vida saludable conlleva un comportamiento adaptable, que es fundamental para la salud mental del hombre e incluye aspectos relacionados con los factores ambientales. La revisión tuvo como objetivo mostrar los avances en las investigaciones sobre los factores de riesgo que contribuyen a la neuroinflamación crónica, sus efectos a nivel cerebral, así como el papel de un estilo de vida saludable en promover la neuroplasticidad. Para ello se realizaron búsquedas principalmente en la base de datos PubMed, y como resultado, se confirmó una asociación positiva entre los estados inflamatorios subclínicos surgidos de estilos de vida poco saludables, y la neuroinflamación crónica con la consecuente neurodegeneración. Lo anterior derivó como conclusión que algunos factores de riesgo como la dieta poco saludable, la obesidad, el estrés, la depresión, la falta de ejercicio físico y los desórdenes del ciclo circadiano son factores conductuales modificables, que deben ser objeto de atención y solución, tanto en lo individual como en lo social. Todo ello resulta un aspecto preocupante en el tema de las enfermedades neurodegenerativas y su enorme costo para la sociedad futura(AU)


A healthy lifestyle involves adaptive behavior, which is fundamental for men's mental health, and includes aspects related to the environmental factors. The review aimed to show advances in research on the risk factors that contribute to chronic neuro-inflammation, its effects at the brain level, as well as the role of a healthy lifestyle in promoting neuroplasticity. For this purpose, searches were carried out mainly in the PubMed database, and as a result, a positive association was confirmed between subclinical inflammatory states arising from unhealthy lifestyles, and chronic neuro-inflammation with consequent neuro-degeneration. The above led to the conclusion that some risk factors such as unhealthy diet, obesity, stress, depression, lack of physical exercise, and circadian cycle disorders are modifiable behavioral factors, which should be the object of attention and solution, both individually and socially. All of this is a worrying aspect of the issue of neurodegenerative diseases and their enormous cost for future society(AU)


Assuntos
Humanos , Masculino , Feminino , Estresse Fisiológico/fisiologia , Microglia , Doenças Neurodegenerativas/epidemiologia , Doenças Neuroinflamatórias/epidemiologia , Obesidade/epidemiologia
2.
Life Sci ; 319: 121538, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868399

RESUMO

AIMS: Reactive oxygen species like hydrogen peroxide (H2O2) are produced endogenously and may participate in intra- and extracellular signaling, including modulation of angiotensin II responses. In the present study, we investigated the effects of chronic subcutaneous (sc) administration of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ) on arterial pressure, autonomic modulation of arterial pressure, hypothalamic expression of AT1 receptors and neuroinflammatory markers and fluid balance in 2-kidney, 1clip (2K1C) renovascular hypertensive rats. MATERIALS AND METHODS: Male Holtzman rats with a clip occluding partially the left renal artery and chronic sc injections of ATZ were used. KEY FINDINGS: Subcutaneous injections of ATZ (600 mg/kg of body weight/day) for 9 days in 2K1C rats reduced arterial pressure (137 ± 8, vs. saline: 182 ± 8 mmHg). ATZ also reduced the sympathetic modulation and enhanced the parasympathetic modulation of pulse interval, reducing the sympatho-vagal balance. Additionally, ATZ reduced mRNA expression for interleukins 6 and IL-1ß, tumor necrosis factor-α, AT1 receptor (0.77 ± 0.06, vs. saline: 1.47 ± 0.26 fold change), NOX 2 (0.85 ± 0.13, vs. saline: 1.75 ± 0.15 fold change) and the marker of microglial activation, CD 11 (0.47 ± 0.07, vs. saline, 1.34 ± 0.15 fold change) in the hypothalamus of 2K1C rats. Daily water and food intake and renal excretion were only slightly modified by ATZ. SIGNIFICANCE: The results suggest that the increase of endogenous H2O2 availability with chronic treatment with ATZ had an anti-hypertensive effect in 2K1C hypertensive rats. This effect depends on decreased activity of sympathetic pressor mechanisms and mRNA expression of AT1 receptors and neuroinflammatory markers possibly due to reduced angiotensin II action.


Assuntos
Hipertensão Renovascular , Hipertensão , Nefropatias , Ratos , Masculino , Animais , Hipertensão Renovascular/tratamento farmacológico , Angiotensina II/farmacologia , Catalase , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Ratos Sprague-Dawley , RNA Mensageiro , Pressão Sanguínea
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12484, 2023. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420761

RESUMO

Borderline personality disorder (BPD) is a severe psychiatric condition that affects up to 2.7% of the population and is highly linked to functional impairment and suicide. Despite its severity, there is a lack of knowledge about its pathophysiology. Studies show genetic influence and childhood violence as factors that may contribute to the development of BPD; however, the involvement of neuroinflammation in BPD remains poorly investigated. This article aimed to explore the pathophysiology of BPD according to the levels of brain-derived neurotrophic factor (BDNF), inflammatory cytokines, and oxidative stress substances that exacerbate neuronal damage. Few articles have been published on this theme. They show that patients with BPD have a lower level of BDNF and a higher level of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in peripheral blood, associated with increased plasma levels of oxidative stress markers, such as malondialdehyde and 8-hydroxy-2-deoxyguanosine. Therefore, more research on the topic is needed, mainly with a pre-clinical and clinical focus.

4.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742886

RESUMO

Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.


Assuntos
Doenças do Sistema Nervoso Central , Tuberculose Meníngea , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo , Doenças do Sistema Nervoso Central/metabolismo , Epitélio , Camundongos
5.
Exp Neurol ; 353: 114060, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367454

RESUMO

Inflammatory processes play a pivotal role in the development and progression of depression. Since Follistatin-like protein 1 (FSTL1) has been identified as a novel inflammatory protein, a variety of studies suggest that targeting FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role. In the study, we aimed to investigate the causal relationship between FSTL1 signaling and the development of depression. To explore the effect and mechanism of FSTL1 on chronic stress-induced depression, the chronic unpredictable mild stress (CUMS) paradigm was used. Animals subjected to CUMS for 4 weeks exhibited depressive-like symptoms, including decreased sucrose preference and obvious behavioral despair, concomitantly with increased FSTL1 level in the hippocampus. In contrast, mice with FSTL1 knockdown abolished CUMS induced depression-like and anxiety-like behaviors. Moreover, FSTL1 knockdown reversed CUMS induced synaptic plasticity deficits in the PP-DG pathway of the hippocampus and increased the expression of synaptic associated proteins in the hippocampus of CUMS exposed mice. Microglia activation induced by CUMS paradigm could be significantly inhibited by FSTL1 knockdown. Furthermore, Western blot revealed that FSTL1 knockdown considerably decreased the expression of indicated molecules TLR4/MyD88/NF-κB signaling pathway in CUMS exposed mice. In conclusion, our data implies that FSTL1 may modulate the microglial activation through TLR4/MyD88/NF-κB signaling, which affects depression-like behaviors and synaptic function deficits induced by CUMS in mice. These results suggested that the role of FSTL1 in mediating microglia-related mechanisms in depression may shed light on developing new therapeutic strategies to treat this prevalent disease.


Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , NF-kappa B , Animais , Depressão/metabolismo , Modelos Animais de Doenças , Proteínas Relacionadas à Folistatina/genética , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide , NF-kappa B/metabolismo , Estresse Psicológico/tratamento farmacológico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Neurosci Biobehav Rev ; 125: 637-653, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713699

RESUMO

It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.


Assuntos
COVID-19 , Esquizofrenia , Astrócitos , Humanos , Microglia , SARS-CoV-2 , Linfócitos T Reguladores
7.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212307

RESUMO

Since the worldwide introduction of antiretroviral therapy (ART) in human immunodeficiency virus type 1, HIV-1-positive mothers, together with HIV-1 testing prior to pregnancy, caesarian birth and breastfeeding cessation with replacement feeding, a reduction of HIV-1 mother-to-child transmission (MTCT) has been observed in the last few years. As such, an increasing number of children are being exposed in utero to ART. Several questions have arisen concerning the neurological effects of ART exposure in utero, considering the potential effect of antiretroviral drugs on the central nervous system, a structure which is in continuous development in the fetus and characterized by great plasticity. This review aims at discussing the possible neurological impairment of children exposed to ART in utero, focusing attention on the drugs commonly used for HIV-1 MTCT prevention, clinical reports of ART neurotoxicity in children born to HIV-1-positive mothers, and neurologic effects of protease inhibitors (PIs), especially ritonavir-"boosted" lopinavir (LPV/r) in cell and animal central nervous system models evaluating the potential neurotoxic effect of ART. Finally, we present the findings of a meta-analysis to assess the effects on the neurodevelopment of children exposed to ART in utero.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1 , Exposição Materna , Mães , Efeitos Tardios da Exposição Pré-Natal , Animais , Fármacos Anti-HIV/efeitos adversos , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Gerenciamento Clínico , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Infecções por HIV/complicações , Infecções por HIV/transmissão , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Metanálise como Assunto , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Gravidez
8.
Behav Sci (Basel) ; 6(4)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983615

RESUMO

This study evaluates the contribution of peripheral biomarkers to comorbidities and clinical findings in autism. Seventeen autistic children and age-matched typically developing (AMTD), between three to nine years old were evaluated. The diagnostic followed the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DMS-IV) and the Childhood Autism Rating Scale (CARS) was applied to classify the severity. Cytokine profile was evaluated in plasma using a sandwich type ELISA. Paraclinical events included electroencephalography (EEG) record. Statistical analysis was done to explore significant differences in cytokine profile between autism and AMTD groups and respect clinical and paraclinical parameters. Significant differences were found to IL-1ß, IL-6, IL-17, IL-12p40, and IL-12p70 cytokines in individuals with autism compared with AMTD (p < 0.05). All autistic patients showed interictalepileptiform activity at EEG, however, only 37.5% suffered epilepsy. There was not a regional focalization of the abnormalities that were detectable with EEG in autistic patients with history of epilepsy. A higher IL-6 level was observed in patients without history of epilepsy with interictalepileptiform activity in the frontal brain region, p < 0.05. In conclusion, peripheral inflammatory markers might be useful as potential biomarkers to predict comorbidities in autism as well as reinforce and aid informed decision-making related to EEG findings in children with Autism spectrum disorders (ASD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA