Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 771: 136464, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051433

RESUMO

The expression of c-Fos protein has been extensively used as a marker of neuronal activation in response to stressful stimuli. Early maternal separation (MS) is a model of early life adversity that affects the responsiveness of the brain areas to stressors. Thus, this study examined the impact of early MS on activating stress-responsive areas in the brain of adult rats in response to physical (ether) or psychological (restraint) stressors. Male pups were divided for the MS or non-handled (NH) groups. The MS was carried out daily between the 2nd and 14th day of postnatal life and consisted in removing the dams from the cage for 180 min. The rats were then subjected to experimental protocols of restraint or ether exposure at 10-12 weeks old. The rats were anesthetized 90 min after exposure to the stressors, and their brains were prepared for immunohistochemical analysis of c-Fos immunoreactive (c-Fos-ir) neurons in the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), medial preoptic area (MPA), medial amygdaloid nucleus (MeA), locus coeruleus (LC), and nucleus of the solitary tract (NST). The MS-group presented 86%, 125%, 73%, 56%, and 137% higher c-Fos-ir neurons in the LC, PVN, SON, MPA, and MeA, respectively, compared to NH-group in response to the restraint stressor. In addition, the MS-group presented 180%, 137%, 170%, and 138% higher c-Fos-ir neurons for the ether exposure in the LC, PVN, MPA, and MeA, respectively. Our results show a greater increase in neuronal activation in the MS group, indicating that early life adversity can induce reprogramming in the brain response to stress in adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Privação Materna , Estresse Psicológico/fisiopatologia , Animais , Encéfalo/citologia , Encéfalo/fisiopatologia , Feminino , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar
2.
J Anat ; 238(2): 467-479, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914872

RESUMO

Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.


Assuntos
Hormônios Esteroides Gonadais/fisiologia , Área Pré-Óptica/crescimento & desenvolvimento , Núcleo Hipotalâmico Ventromedial/crescimento & desenvolvimento , Animais , Feminino , Fibras Nervosas , Ovariectomia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA