Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e24006, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38234893

RESUMO

Population growth in recent years has led to increased wastewater production and pollution of water resources. This situation also heavily affects Bolivia, so wastewater treatment methods and materials suitable for Bolivian society should be explored. This study investigated the natural Bolivian Zeolite (BZ) and its NaCl-modified structure (NaBZ) as adsorbents for cadmium removal from water. The natural BZ and the modified form NaBZ were investigated by different physicochemical characterization techniques. Furthermore, XPS and FT-IR techniques were used to investigate the adsorption mechanisms. The cadmium adsorption on BZ and NaBZ was analyzed using various mathematical models, and the Langmuir model provided a better description of the experimental adsorption data with cadmium adsorption capacities of 20.2 and 25.6 mg/g for BZ and NaBZ, respectively. The adsorption followed the pseudo-second order kinetics. The effect of different parameters, such as initial cadmium concentration and pH on the adsorption was studied. In addition, the results of the regeneration test indicated that both BZ and NaBZ can be regenerated by using hydrochloric acid (HCl). Finally, the adsorption experiment of BZ and NaBZ on a real water sample (brine from Salar de Uyuni salt flat) containing a mixture of different heavy metals was carried out. The results obtained in this study demonstrate the effectiveness of natural BZ and modified NaBZ in the removal of heavy metals from wastewater.

2.
Environ Sci Pollut Res Int ; 24(7): 6794-6806, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28091996

RESUMO

Zeolitic tuff constitutes a technical and economical feasible alternative to manage acidic waters in initial phases of generation. A study of cation exchange with two zeolitic tuffs from Ecuador and one from Cuba has been conducted using breakthrough curve methodology. Cations Mn2+, Cd2+, Cr3+, Zn2+, and Al3+ have been chosen owing to their presence in underground water in exploration activities (decline development) in Fruta del Norte (Ecuador). Zeolites characterized by X-ray diffraction and thermal stability after heating overnight as heulandites show a similar exchange behavior for the five cations studied. The clinoptilolite sample Tasajeras shows a relevant cation exchange performance expressed in the important increment of spatial time to reach the breakthrough point in comparison with heulandite samples. The maximum length of unused beds was found for Cr3+ and Zn2+ cations showing, therefore, a lower adsorption performance in relation with Mn2+ and Cd2+. A final disposal method of metal-loaded zeolites with cement is proposed.


Assuntos
Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Zeolitas/química , Zinco/isolamento & purificação , Adsorção , Alumínio/isolamento & purificação , Cádmio/isolamento & purificação , Cromo/isolamento & purificação , Cuba , Equador , Manganês/isolamento & purificação , Mineração
3.
Artigo em Inglês | MEDLINE | ID: mdl-26818904

RESUMO

The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents.


Assuntos
Silicatos de Alumínio/química , Cátions/química , Cromo/química , Resíduos Industriais , Águas Residuárias/química , Zeolitas/química , Cromo/análise , Cuba , Concentração de Íons de Hidrogênio , Troca Iônica , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA