Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 112(6): 2545-2557, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504695

RESUMO

In 2001, Nasutitermes corniger (Motschulsky), common name conehead termite, were discovered near a marina in Dania Beach, FL, where the invasive species was probably transported from its native range in Central and South America or the Caribbean. In January 2016, an infestation was found in Pompano Beach, Florida, approximately 21 km north of the Dania Beach population. This study compares variants in seven microsatellite loci across specimens from 11 nests in Dania Beach and 8 nests in Pompano Beach. Results are consistent with all N. corniger in both locations being descendants of a single introduced colony, spreading within Broward County, FL through human transport of infested materials. No more than four alleles were found at any of the seven microsatellite loci analyzed, inferring that a single Queen and King, or multiple sibling reproductives descended from a monogamous pair, headed the colony that arrived in Florida. The potential economic and environmental impacts of this invasive termite are enormous due to its broad diet, including agricultural crops and orchards, native and ornamental plants, natural landscapes, and structures. Conspicuous tunnels and aboveground nests are the key aspects of N. corniger biology that render colonies vulnerable to discovery and control. The now proven ability of N. corniger to establish breeding populations in the United States, to cause extensive property and landscape destruction, and to spread by human transport underscores the need for continued aggressive efforts toward eradication of known infestations as well as quick operational actions the next time invasive N. corniger are discovered.


Assuntos
Baratas , Isópteros , Animais , Florida , Repetições de Microssatélites , América do Sul
3.
Artigo em Inglês | MEDLINE | ID: mdl-25026598

RESUMO

The digestive apparatus of termites may have several biotechnological applications, as well as being a target for pest control. This report discusses the detection of cellulases (endoglucanase, exoglucanase, and ß-glucosidase), hemicellulases (ß-xylosidase, α-l-arabinofuranosidase, and ß-d-xylanase), α-amylase, and proteases (trypsin-like, chymotrypsin-like, and keratinase-type) in gut extracts from Nasutitermes corniger workers and soldiers. Additionally, the effects of pH (3.0-11.0) and temperature (30-100°C) on enzyme activities were evaluated. All enzymes investigated were detected in the gut extracts of worker and soldier termites. Endoglucanase and ß-xylanase were the main cellulase and hemicellulase, respectively. Zymography for proteases of worker extracts revealed polypeptides of 22, 30, and 43kDa that hydrolyzed casein, and assays using protease inhibitors showed that serine proteases were the main proteases in worker and soldier guts. The determined enzyme activities and their response to different pH and temperature values revealed that workers and soldiers contained a distinct digestive apparatus. The ability of these termites to efficiently digest the main components of lignocellulosic materials stimulates the purification of gut enzymes. Further investigation into their biotechnological potential as well as whether the enzymes detected are produced by the termites or by their symbionts is needed.


Assuntos
Celulase/metabolismo , Sistema Digestório/enzimologia , Isópteros/enzimologia , Peptídeo Hidrolases/metabolismo , alfa-Amilases/metabolismo , Animais , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA