Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Funct Biomater ; 14(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37103314

RESUMO

Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.

2.
Biomimetics (Basel) ; 8(1)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36975353

RESUMO

Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating.

3.
ACS Biomater Sci Eng ; 9(4): 1891-1899, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36881832

RESUMO

Bioinspired bactericidal surfaces are artificial surfaces that mimic the nanotopography of insect wings and are capable of inhibiting microbial growth by a physicomechanical mechanism. The scientific community has considered them an alternative method to design polymers with surfaces that inhibit bacterial biofilm formation, suitable for self-disinfectant medical devices. In this contribution, poly(lactic acid) (PLA) with nanocone patterns was successfully produced by a novel two-step procedure involving copper plasma deposition followed by argon plasma etching. According to reverse transcription-quantitative polymerase chain reaction tests, the bioinspired PLA nanostructures display antiviral performance to inactivate infectious Omicron severe acute respiratory syndrome coronavirus 2 particles, reducing the amount of the viral genome to less than 4% in just 15 min due to a possible combined effect of mechanical and oxidative stress. The bioinspired antiviral PLA can be suitable for designing personal protection equipment to prevent the transmission of contagious viral diseases, such as Coronavirus Disease 2019.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antibacterianos/farmacologia , Antivirais/farmacologia , Poliésteres
4.
J Funct Biomater ; 14(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36826878

RESUMO

BACKGROUND: The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS: Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS: In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION: Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.

5.
Biomimetics (Basel) ; 7(3)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36134940

RESUMO

This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells' differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces.

6.
Biomater Adv ; 134: 112548, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35012895

RESUMO

The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.


Assuntos
Osteoclastos , Titânio , Histonas/metabolismo , Metilação , Osteoblastos , Osteoclastos/metabolismo , Propriedades de Superfície , Titânio/farmacologia
7.
Braz. dent. sci ; 25(1): 1-9, 2022. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1353788

RESUMO

Objective: The objective of this study was to evaluate in vitro the influence of the anodized surface of Ti35Nb7Zr alloy on the behavior of osteogenic cells, for future application in biomedical implants. Material and Methods: For the development of this research, samples of commercially pure titanium (TiCp) and samples of Ti35Nb7Zr alloy were anodized, both were characterized by scanning electron microscopy (SEM) and were plated afterwards with human osteoblast-like cells (MG63 line) (2 x 104). Cell adhesion, cytotoxicity test, formation of mineralization nodules and a comet assay were also performed in different periods. The bottom of the plate was used as a control, without a sample. Results: SEM analysis showed that the topography of both samples presented surfaces covered by nanotubes. Cellular morphology exhibited spreading in both samples proposing an intimate cell- material liaison. After 3 days, the Ti35Nb7Zr group exhibited greater cell viability than the TiCp group (p<0.01). Regarding calcium content, there was no statistical difference between the anodized groups, but there was a difference between the experimental groups and the control group (p<0.01). In the comet assay, the percentage of DNA in the comet tail did not exhibit any significant difference (p>0.05) among the groups in the evaluated periods. Conclusion: It was concluded that this process of anodization was efficient to form nanotubes, as well as promote a positive influence on the behavior of osteogenic cells without promoting cell damage. (AU)


Objetivo: O objetivo deste estudo foi avaliar in vitro a influência da superfície anodizada da liga Ti35Nb7Zr no comportamento de células osteogênicas, para futura aplicação em implantes biomédicos. Material e Métodos: Para o desenvolvimento desta pesquisa, amostras de titânio comercialmente puro (TiCp) e amostras da liga Ti35Nb7Zr foram anodizadas, ambas foram caracterizadas por microscopia eletrônica de varredura (MEV) e posteriormente plaqueadas com células semelhantes a osteoblastos humanos (linha MG63) (2 x 104). Foram realizados em diferentes períodos a adesão celular, teste de citotoxicidade, formação de nódulos de mineralização e ensaio do cometa. O fundo da placa foi usado como controle, sem amostra. Resultados: A análise em MEV mostrou que a topografia de ambas as amostras apresentava superfícies cobertas por nanotubos. A morfologia celular exibiu espalhamento em ambas as amostras, propondo uma ligação íntima célula-material. Após 3 dias, o grupo Ti35Nb7Zr exibiu maior viabilidade celular do que o grupo TiCp (p<0.01). Em relação ao teor de cálcio, não houve diferença estatística entre os grupos anodizados, mas houve diferença entre os grupos experimentais e o grupo controle (p<0.01). No ensaio do cometa, a porcentagem de DNA na cauda do cometa não apresentou diferença significativa (p> 0.05) entre os grupos nos períodos avaliados. Conclusão:Concluiu-se que esse processo de anodização foi eficiente para formar nanotubos, além de promover uma influência positiva no comportamento das células osteogênicas sem promover dano celular. (AU)


Assuntos
Osteoblastos , Titânio
8.
J Cell Physiol ; 235(11): 8293-8303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32239701

RESUMO

This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and ß-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/ß-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/ß-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Receptores Frizzled/metabolismo , Osteoblastos/metabolismo , Titânio , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular , Nanopartículas Metálicas , Camundongos , Osteogênese/fisiologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
9.
Colloids Surf B Biointerfaces ; 184: 110513, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561047

RESUMO

Wnt/ß-catenin signal transduction is involved in the homeostatic control of bone mass. It is well established that a titanium surface with nanotopography (Ti-Nano) favors osteoblast differentiation by modulating different signaling pathways. However, few studies have investigated the participation of the Wnt/ß-catenin pathway in the osteogenic effect of nanoscale topographies. In this study, we aimed to determine whether the Wnt/ß-catenin signaling pathway is involved in the elevated osteogenic potential of Ti-Nano. MC3T3-E1 cells were cultured on Ti-Nano and machined Ti (Ti-Control) for evaluation of the expression of Wnt/ß-catenin signaling pathway-related genes. Based on the results to real-time PCR, the Wnt receptor Fzd4 was selected and silenced by CRISPRi. The resulting cells were cultured on both Ti surfaces, and several events involved in osteoblast differentiation were evaluated. The results revealed that Fzd4 gene silencing, corresponding to negative modulation of Wnt/ß-catenin, inhibits expression of the osteoblast phenotype. It is worthy of note that this inhibitory effect on osteoblast differentiation was more pronounced in cells grown on Ti-Nano compared with those grown on Ti-Control. By disrupting Fzd4 gene expression, we have shown that the elevated osteogenic potential of Ti-Nano is due to activation of the Wnt/ß-catenin signaling pathway, which reveals a new mechanism to explain osteoblast differentiation induced by nanotopography. Such an understanding of the intracellular machinery involved in surface guiding of osteoblast fate may contribute to the development of smart biomaterials to modulate the process of implant osseointegration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células 3T3 , Animais , Células Cultivadas , Camundongos , Tamanho da Partícula , Propriedades de Superfície
10.
J Biomater Sci Polym Ed ; 30(16): 1489-1504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322980

RESUMO

Cellulose is a renewable polymer quite abundant on the Earth and very attractive for applications in the construction of eco-friendly biomedical products. The aim of this study was to investigate the chemical-physical characteristics of cotton cellulose nanofiber (CCN)/chitosan nanocomposite and its cytocompatibility with human embryonic kidney cells. First, the chemical composition, swelling ratio and surface topography of the nanocomposite were evaluated. Cytocompatibility was then assessed through spreading, proliferation and viability of cells. The experimental results showed that the CCN was an effective nanomaterial agent for increasing the roughness surface of chitosan film. Cell proliferation and changes in cell morphology indicated that the nanocomposite led to improved cell spreading and growth. Cell viability did not decrease after 24 h. However, the cell survival on the nanocomposite was affected at 72 h. The results indicate that CCN/chitosan nanocomposite could be a promising biocompatible biomaterial for biomedical applications.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Quitosana/química , Nanocompostos/efeitos adversos , Nanocompostos/química , Nanofibras/efeitos adversos , Nanofibras/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanoestruturas/química , Polímeros/química , Propriedades de Superfície
11.
J Cell Biochem ; 120(10): 16723-16732, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090958

RESUMO

Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2 SO4 /H2 O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, ß1, and ß3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Integrina alfa5/biossíntese , Nanoestruturas , Osteoblastos/metabolismo , Titânio/farmacologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Integrina alfa5/genética , Masculino , Osteoblastos/citologia , Ratos , Ratos Wistar , Propriedades de Superfície
12.
J Biomed Mater Res A ; 107(6): 1303-1313, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707485

RESUMO

The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin ß3, which increases osteoblast differentiation. Silencing integrin ß3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin ß3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/ß-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin ß3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin ß3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.


Assuntos
Diferenciação Celular , Integrina beta3/metabolismo , Nanoestruturas/química , Osteoblastos/metabolismo , Titânio/química , Via de Sinalização Wnt , Animais , Linhagem Celular , Masculino , Camundongos , Osteoblastos/citologia , Ratos , Ratos Wistar
13.
J Cell Biochem ; 119(10): 8441-8449, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29932237

RESUMO

Among bone morphogenetic proteins (BMPs), BMP-9 has been described as one with higher osteogenic potential. Here, we aimed at evaluating the effect of BMP-9 on the osteoblast differentiation of cells grown on titanium (Ti) with nanotopography, a well-known osseoinductive surface. MC3T3-E1 cells were grown either in absence or presence of BMP-9 (20 nM) on Ti with nanotopography (Ti-Nano) or machined Ti (Ti-Machined) for up to 21 days to evaluate the gene expression of RUNX2, osterix, osteocalcin, bone sialoprotein, SMAD6 and SMAD4, protein expression of SMAD4, ALP activity and extracellular matrix mineralization. As expected BMP-9 increased osteoblast differentiation irrespective of Ti surface topography; however, the cells grown on Ti-Nano were more responsible to BMP-9 compared with cells grown on Ti-machined. This could be, at least in part, due to the fact that Ti-Nano may act on both ways, by increasing the activation (SMAD4) and decreasing the inhibition (SMAD6) of the signaling pathway triggered by BMP-9, while Ti-Machined only decrease the inhibition (SMAD6) of this pathway. In conclusion, the combination of the osteogenic potential of BMP-9 with the osseoinductive capacity of Ti-Nano could be a promising strategy to favor the osseointegration of Ti implants.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Nanoporos/ultraestrutura , Osteoblastos/citologia , Titânio/química , Titânio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise de Variância , Animais , Adesão Celular/fisiologia , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Smad4/metabolismo , Proteína Smad6/metabolismo , Propriedades de Superfície
14.
Eur J Oral Sci ; 125(5): 355-360, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28805275

RESUMO

Osteoblasts and adipocytes coexist in the implantation site and affect the process of titanium (Ti) osseointegration. As extracellular signal-regulated kinases 1/2 (ERK1/2) are involved in osteogenesis and adipogenesis, the aim of our study was to investigate if the effects of Ti surface topography on osteoblast and adipocyte differentiation are modulated by ERK1/2. The experiments were conducted based on the effect of the ERK1/2 inhibitor, PD98059, on mesenchymal stem cells (MSCs) grown under osteogenic and adipogenic conditions on Ti with nanotopography (Ti-Nano) or on machined Ti (Ti-Machined). The results showed that, in general, ERK1/2 inhibition favored osteoblast and adipocyte differentiation of MSCs grown on Ti-Machined. In MSCs grown on Ti-Nano, ERK1/2 inhibition upregulated the expression of alkaline phosphatase and osteocalcin and reduced extracellular matrix mineralization. In terms of adipocyte differentiation, ERK1/2 inhibition elicited similar MSC responses to Ti-Nano and Ti-Machined, upregulating gene expression of adipocyte markers without affecting lipid accumulation. Our results indicate that, under osteogenic and adipogenic conditions, the responses of MSCs to Ti surface topography in terms of osteogenesis and adipogenesis are dependent on ERK1/2. Thus, a precise modulation of ERK1/2 expression and activity induced by surface topography could be a good strategy to drive the process of implant osseointegration.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/farmacologia , Osteoblastos/metabolismo , Titânio/química , Animais , Células Cultivadas , Flavonoides/farmacologia , Expressão Gênica , Masculino , Microscopia Eletrônica de Varredura , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Propriedades de Superfície
15.
J Biomed Mater Res A ; 105(10): 2783-2788, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28643442

RESUMO

Several studies have shown the positive effects of Ti either with nanotopography or coated with collagen on osteoblast differentiation. Thus, we hypothesized that the association of nanotopography with collagen may increase the in vitro osteogenesis on Ti surface. Ti discs with nanotopography with or without collagen coating were characterized by scanning electron microscopy and atomic force microscopy. Rat calvaria-derived osteoblastic cells were cultured on both Ti surfaces for up to 14 days and the following parameters were evaluated: cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, protein expression of bone sialoprotein (BSP) and osteopontin (OPN), and gene expression of collagen type 1a (Coll1a), runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OC), Ki67, Survivin, and Bcl2-associated X protein (BAX). Surface characterization evidenced that collagen coating did not alter the nanotopography. Collagen coating increased cell proliferation, ALP activity, extracellular matrix mineralization, and Coll1a, OSX, OC, and BAX gene expression. Also, OPN and BSP proteins were strongly detected in cultures grown on both Ti surfaces. In conclusion, our results showed that the combination of nanotopography with collagen coating stimulates the early, intermediate, and final events of the in vitro osteogenesis and may be considered a potential approach to promote osseointegration of Ti implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2783-2788, 2017.


Assuntos
Materiais Revestidos Biocompatíveis/química , Colágeno/química , Nanoestruturas/química , Osteoblastos/citologia , Osteogênese , Titânio/química , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Osteoblastos/metabolismo , Ratos , Ratos Wistar , Propriedades de Superfície
16.
J Biomed Mater Res A ; 105(8): 2150-2161, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28371254

RESUMO

Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017.


Assuntos
Materiais Biocompatíveis/química , Mastócitos/citologia , Nanoestruturas/química , Titânio/química , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Ratos , Propriedades de Superfície
17.
J Cell Biochem ; 117(7): 1718-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26681207

RESUMO

We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-ß/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-ß/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Proteína Morfogenética Óssea 2/biossíntese , Proteína Morfogenética Óssea 4/biossíntese , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Titânio/farmacologia , Fosfatase Alcalina/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Propriedades de Superfície
18.
J Biomed Mater Res A ; 102(1): 37-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23568757

RESUMO

Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces.


Assuntos
Diferenciação Celular , Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Osteoblastos/metabolismo , Osteogênese , Dióxido de Silício/química , Titânio/química , Adesão Celular , Linhagem Celular Tumoral , Humanos , Osteoblastos/citologia , Porosidade
19.
J Cell Biochem ; 115(3): 540-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24122940

RESUMO

The aim of our study was to investigate the osteoinductive potential of a titanium (Ti) surface with nanotopography, using mesenchymal stem cells (MSCs) and the mechanism involved in this phenomenon. Polished Ti discs were chemically treated with H2 SO4 /H2 O2 to yield nanotopography and rat MSCs were cultured under osteogenic and non-osteogenic conditions on both nanotopography and untreated polished (control) Ti surfaces. The nanotopography increased cell proliferation and alkaline phosphatase (Alp) activity and upregulated the gene expression of key bone markers of cells grown under both osteogenic and non-osteogenic conditions. Additionally, the gene expression of α1 and ß1 integrins was higher in cells grown on Ti with nanotopography under non-osteogeneic condition compared with control Ti surface. The higher gene expression of bone markers and Alp activity induced by Ti with nanotopography was reduced by obtustatin, an α1ß1 integrin inhibitor. These results indicate that α1ß1 integrin signaling pathway determines the osteoinductive effect of nanotopography on MSCs. This finding highlights a novel mechanism involved in nanosurface-mediated MSCs fate and may contribute to the development of new surface modifications aiming to accelerate and/or enhance the process of osseointegration.


Assuntos
Integrina alfa1beta1/genética , Células-Tronco Mesenquimais/citologia , Nanotecnologia , Osteoblastos/citologia , Titânio/química , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Integrina alfa1beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície , Venenos de Víboras/farmacologia
20.
Braz. dent. j ; Braz. dent. j;22(3): 179-184, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-595640

RESUMO

The bone-biomaterial interface has been characterized by layers of afibrillar extracellular matrix (ECM) enriched in non collagenous proteins, including osteopontin (OPN), a multifunctional protein that in bone controls cell adhesion and ECM mineralization. Physical and chemical aspects of biomaterial surfaces have been demonstrated to affect cell-ECM-substrate interactions. The present paper described the ability of oxidative nanopatterning of titanium (Ti) surfaces to control extracellular OPN deposition in vitro. Ti discs were chemically treated by a mixture of H2SO4/H2O2 for either 30 min [Nano(30') Ti] or 4 h [Nano(4h) Ti]. Non-etched Ti discs were used as control. Primary osteogenic cells derived from newborn rat calvarial bone were plated on control and etched Ti and grown under osteogenic conditions up to 7 days. High resolution scanning electron microscopy revealed that treated Ti discs exhibited a nanoporous surface and that areas of larger nanopits were noticed only for Nano(4h) Ti. Large extracellular OPN accumulation were detectable only for Nano(4h) Ti, which was associated with OPN-positive cells with typical aspects of migrating cells. At day 3, quantitative results in terms of areas of OPN labeling were as follows: Nano(4h) Ti > Nano(30') Ti > Control Ti. In conclusion, chemically nanostructured Ti surfaces may support the enhancement of endogenous extracellular OPN deposition by osteogenic cells in vitro depending on the etching time, a finding that should be taken into consideration in strategies to biofunctionalize implant surfaces with molecules with cell adhesion capacity.


A interface osso-implante é caracterizada pela presença de uma camada de matriz extracellular (MEC) afibrilar rica em proteínas não-colágenas, incluindo osteopontina (OPN), cujas funções no tecido ósseo estão relacionadas à adesão celular e ao controle do processo de mineralização da MEC (crescimento de cristais). Aspectos físicos e químicos das superfícies de biomateriais podem afetar as interações célula-MEC-substrato. O objetivo do presente estudo foi demonstrar a capacidade de aspectos nanotopográficos de superfície de titânio (Ti) de controlar a deposição extracelular de OPN in vitro. Discos de Ti foram tratados quimicamente por solução de H2SO4/H2O2 durante 30 min [Nano(30') Ti] ou 4 h [Nano(4h) Ti]. Superfícies de Ti não tratadas foram usadas como controle. Células osteogênicas primárias derivadas de calvárias de ratos recém-nascidos foram plaqueadas sobre os discos de Ti e cultivadas em condições osteogênicas por até 7 dias. Microscopia eletrônica de varredura de alta resolução revelou que os discos de Ti tratados quimicamente exibiam superfície nanoporosa, com áreas de nanoporos maiores para Nano(4h) Ti. Apenas para esse grupo detectavam-se acúmulos extensos de OPN extracelular, os quais se distribuíam em áreas adjacentes a células OPN-positivas, com aspectos morfológicos típicos de células em migração. Em conclusão, a nanoestruturação química de superfície de Ti pode favorecer o aumento da deposição extracelular de OPN endógena por células osteogênicas in vitro, dependendo do tempo de condicionamento utilizado, o que deve ser considerado no desenvolvimento de estratégias para funcionalizar superfícies de implantes com moléculas com reconhecido efeito no processo de adesão celular.


Assuntos
Animais , Ratos , Materiais Biocompatíveis/química , Materiais Dentários/química , Proteínas da Matriz Extracelular/farmacocinética , Nanopartículas/química , Osteopontina/farmacocinética , Titânio/química , Adsorção , Animais Recém-Nascidos , Condicionamento Ácido do Dente/métodos , Células Cultivadas , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Peróxido de Hidrogênio/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotecnologia , Oxirredução , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteogênese/fisiologia , Ratos Wistar , Propriedades de Superfície , Ácidos Sulfúricos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA