Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(8): 223, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402028

RESUMO

CONTEXT: Natural products and their biotransformation procedures are a powerful source of new chromophores with potential applications in fields like biology, pharmacology and materials science. Thus, this work discusses about the extraction procedure of 1-nitro-2-phenylethane (1N2PE) from Aniba canelilla, its biotransformation setup into 2-phenylethanol (2PE) using four fungi, Lasiodiplodia caatinguensis (phytopathogenic fungus from Citrus sinensis), Colletotrichum sp. (phytopathogenic fungus from Euterpe oleracea), Aspergillus flavus and Rigidoporus lineatus isolated from copper mining waste located in the interior of the Brazilian Amazon. A detailed experimental and theoretical vibrational analysis (IR and Raman) have allowed us to perform some charge transfer effects on the title compounds (push-pull effect) by monitoring specific vibrational modes of their electrophilic and nucleophilic molecular sites. The solvent interactions promote molecular conformations that affect the vibrational spectra of the donor and acceptor groups, as can be seen comparatively in the gas and aqueous solution spectra, an effect possibly related to the bathochromic shift in the calculated optical spectrum of the compounds. The nonlinear optical behavior shows that while the solvent reduces the response of 1N2PE, the response of 2PE increases the optical parameters, which presents low refractive index (n) and first hyperpolarizability. ([Formula: see text]) is almost eight times that reported for urea (42.79 a.u.), a common nonlinear optical material. Furthermore, the bioconversion goes from an electrophilic to a nucleophilic compound, affecting its molecular reactivity. METHODS: 1N2PE was obtained from Aniba canelilla, whose essential oil is constituted of [Formula: see text] of 2PE. The A. canelilla essential oil was extracted under hydrodistillation. The biotransformation reactions were performed in autoclaved liquid media (100 mL) composed of malt extract (2%) in 250 mL Erlenmeyer flask. Each culture was incubated in an orbital shaker (130 rpm) at [Formula: see text]C during 7 days and after that, 50 mg of 1N2PE (80%) were diluted in 100 [Formula: see text]L of dimethylsulfoxide (DMSO) and added to the reactions flasks. Aliquots (2 mL) were removed using ethyl acetate (2 mL) and analyzed by GC-MS (fused silica capillary col1umn, Rtx -5MS 30 m [Formula: see text] 0.25 mm [Formula: see text] 0.25 [Formula: see text]m) in order to determine the amount of 1N2PE biotransformation. FTIR 1N2PE and 2PE spectra were obtained by attenuated total reflectance (ATR), using a Agilent CARY 630 spectrometer, in the spectral region 4000-650 cm[Formula: see text]. The quantum chemical calculations were carried out in the Gaussian 09 program while the DICE code was used to perform the classical Monte Carlo simulations and generate the liquid environment using the classical All-Atom Optimized parameters for Liquid Simulations (AA-OPLS). All nonlinear optical properties, reactive parameters, and electronic excitations were calculated using the Density Functional Theory framework coupled to the standard 6-311++G(d,p) basis set.


Assuntos
Óleos Voláteis , Álcool Feniletílico , Termodinâmica , Solventes , Fungos , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Teoria Quântica
2.
J Mol Model ; 28(6): 162, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597858

RESUMO

The present work reports the theoretical investigation of Co(II), Ni(II), and Zn(II) complexes containing Schiff bases (used as ligands) derived from the reaction of 2-hydroxy-1-naphthaldehyde with N-(2-aminoethyl) pyrazoles. The spectral analyses were carried out using infrared, Raman, and UV-Vis spectroscopy. Vibrational analyses were performed in order to investigate the mechanisms involving metal-ligand and intra-ligand vibrations and indicated the possibility of charge transfer related to the transitions n[Formula: see text]* and [Formula: see text]*. Structure optimizations and normal coordinate force field calculations were performed via the density functional theory (DFT) method at the HSE06/6-311G(d,p)/LanL2DZ level. A thorough analysis was also conducted regarding the nonlinear optical (NLO) properties and the natural bond orbital (NBO) of the complexes. The results show that these complexes have prospective application as materials for NLO. Furthermore, the NBO analysis confirms the coordination between the lone pair (LP) electrons of the donor atoms (O and N) and the metal acceptors. Finally, studies were conducted regarding the electronic properties of the complexes; among the properties investigated included the frontier molecular orbitals (FMO) and the molecular electrostatic potential (MEP), allowing to determine the energy gap and charge distribution.


Assuntos
Iminas , Vibração , Eletrônica , Ligantes , Modelos Moleculares , Pirazóis , Teoria Quântica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Zinco
3.
Heliyon ; 7(1): e06079, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553750

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, with approximately 6-7 million people infected worldwide, becoming a public health problem in tropical countries, thus generating an increasing demand for the development of more effective drugs, due to the low efficiency of the existing drugs. Aiming at the development of a new antichagasic pharmacological tool, the density functional theory was used to calculate the reactivity descriptors of amentoflavone, a biflavonoid with proven anti-trypanosomal activity in vitro, as well as to perform a study of interactions with the enzyme cruzain, an enzyme key in the evolutionary process of T-cruzi. Structural properties (in solvents with different values of dielectric constant), the infrared spectrum, the frontier orbitals, Fukui analysis, thermodynamic properties were the parameters calculated from DFT method with the monomeric structure of the apigenin used for comparison. Furthermore, molecular docking studies were performed to assess the potential use of this biflavonoid as a pharmacological antichagasic tool. The frontier orbitals (HOMO-LUMO) study to find the band gap of compound has been extended to calculate electron affinity, ionization energy, electronegativity electrophilicity index, chemical potential, global chemical hardness and global chemical softness to study the chemical behaviour of compound. The optimized structure was subjected to molecular Docking to characterize the interaction between amentoflavone and cruzain enzyme, a classic pharmacological target for substances with anti-gas activity, where significant interactions were observed with amino acid residues from each one's catalytic sites enzyme. These results suggest that amentoflavone has the potential to interfere with the enzymatic activity of cruzain, thus being an indicative of being a promising antichagasic agent.

4.
J Mol Model ; 27(2): 52, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502611

RESUMO

Chalcones are organic compounds that present a number of properties. This study presents a comprehensive structural description of a new derivative of a chlorine-substituted chalcone in comparison with a bromine chalcone. Also, supermolecule and sum-over-state approach were used to describe the optical properties of these structures regarding the substitution of the bromine by the chlorine atom. In addition, the electrical properties, dipole moment, linear polarizability, and second IDRI hyperpolarizability were calculated. The linear refractive index and the third-order nonlinear macroscopic susceptibility were evaluated as a function of the applied electric field frequency. Furthermore, the quantum mechanics calculations that were implemented at the M06-2X/6-311++G(d,p) level of the theory for these isostructural chalcones indicate that the change in halogen atoms does not cause meaningful changes in their conformation. Finally, we can postulate that side-to-side and the antiparallel interactions are the interaction forces that drive the crystal growth for new isostructural chalcones. The NLO properties showed title compounds that are good candidates for use as NLO materials.

5.
J Mol Model ; 23(4): 122, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28315081

RESUMO

A supermolecular approach combined with an iterative electrostatic scheme was employed to investigate the nonlinear optical properties of the hybrid L-arginine phosphate monohydrate crystal, the procedure being aided by DFT calculations. The supermolecular scheme basically treated the molecules surrounding the unit cell as point charges; this approximation results in rapid convergence, making it a feasible method. DFT functionals of different flavors were considered: B3LYP, B2PLYP, CAM-B3LYP, ωB97, and M06HF, utilizing the 6-311 + G(d) basis set. All functionals gave sufficiently accurate values for the dipole moment (µ) with respect to the experimental value 32(2) D. For the average linear polarizability ([Formula: see text]) and the total first hyperpolarizability (ß tot), good agreement was observed between the DFT-calculated values and MP2-derived results reported in the literature. For the second hyperpolarizability, both static and dynamic regimes were considered. The point-charge embedding approach led to an attenuation of the second hyperpolarizability γ for all frequencies considered. Excitations of γ were not observed for frequencies smaller than 0.1 a.u. For the second hyperpolarizability (both static and dynamic), computational results showed that L-arginine phosphate monohydrate exhibits a large nonlinear optical effect, which implies the occurrence of microscopic third-order NLO behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA