Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Meas ; 35(5): 393-422, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12440430

RESUMO

Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources.


Assuntos
Radiação Cósmica , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Ausência de Peso , Astronautas , Oceano Atlântico , Atividade Extraespaçonave , Humanos , Nêutrons , Prótons , Doses de Radiação , Proteção Radiológica , América do Sul , Voo Espacial/tendências , Astronave/instrumentação , Dosimetria Termoluminescente/instrumentação
2.
Radiat Meas ; 30(3): 401-14, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11543144

RESUMO

Current models of the inner trapped belt describe the radiation environment at times of solar minimum and solar maximum, respectively. These two models were constructed using data acquired prior to 1970 during a small solar cycle, and no valid model for the past two high solar cycles exists. There is a clear need to accurately predict the radiation exposure of astronauts at all times between the solar minimum and solar maximum, not only on the short duration Space Shuttle flights, but on the longer term stay onboard the Mir orbital station and the planned International Space Station (ISS). An analysis of the trapped absorbed dose rate, D, at six fixed locations in the habitable volume of the Shuttle shows a power law relationship, D=A rho-n, where rho is the atmospheric density, rho. The index, n, is weakly dependent on the shielding, decreasing as the average shielding increases. A better representation is provided by D=A tan-1 [(Xi-Xi c)/(Xi c-Xi m)], where Xi=ln(rho), and A, Xi c, and Xi m are constants. Xi c is related to the atmospheric density near the altitude of atmospheric cutoff. These relationships hold over nearly four decades of density variation and throughout the solar cycle. This then provides a method of calculating absorbed dose rate at anytime in the solar cycle. These empirically derived relations were used to predict the dose rates for eleven Space Shuttle flights carried out since January 1997. The predictions are in excellent agreement with measured values. This method reduces the uncertainties of a factor of about 2 for the AP-8 MIN/MAX models to less than 30%.


Assuntos
Altitude , Atmosfera , Radiação Cósmica , Modelos Estatísticos , Voo Espacial/instrumentação , Oceano Atlântico , Feminino , Humanos , Transferência Linear de Energia , Masculino , Matemática , Doses de Radiação , Monitoramento de Radiação/instrumentação , Proteção Radiológica , Análise de Regressão , Atividade Solar , América do Sul , Astronave/instrumentação , Dosimetria Termoluminescente , Ausência de Peso
3.
Radiat Meas ; 30(3): 415-26, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11543145

RESUMO

Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.


Assuntos
Transferência Linear de Energia , Nêutrons , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Anisotropia , Oceano Atlântico , Radiação Cósmica , Doses de Radiação , Proteção Radiológica , Atividade Solar , América do Sul , Dosimetria Termoluminescente
4.
J Geophys Res ; 104(A10): 22793-9, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11543495

RESUMO

The measurement of the directional distribution of incident particles was made by using the Real time Radiation Monitoring Device (RRMD)-III placed inside the Space Shuttle STS-84 cruised at an altitude of 400 km and an inclination angle of 51.6 degrees, which are the same as the cruising orbit of the International Space Station (ISS). The directional distributions of incident particles were evaluated over the observed linear energy transfer (LET) range (1-100 keV/micrometers). The pitch angle distribution is also obtained using the geomagnetic model of IGRF-95. The result is roughly in good agreement with the distribution obtained by the VF1-MIN anisotropy model calculation within the present experimental errors, if the shielding distribution is assumed to be uniform.


Assuntos
Radiação Cósmica , Partículas Elementares , Modelos Teóricos , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Anisotropia , Oceano Atlântico , Transferência Linear de Energia , Proteção Radiológica , Atividade Solar , América do Sul , Ausência de Peso
5.
Adv Space Res ; 22(4): 501-10, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-11542778

RESUMO

The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay time in orbit for International Space Station crew members.


Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Oceano Atlântico , Sistema Hematopoético/efeitos da radiação , Humanos , Transferência Linear de Energia , Doses de Radiação , Proteção Radiológica , Radiometria/instrumentação , Federação Russa , Pele/efeitos da radiação , América do Sul , Astronave/instrumentação , Estados Unidos , United States National Aeronautics and Space Administration , Ausência de Peso
6.
J Geophys Res ; 102(A2): 2343-9, 1997 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11539371

RESUMO

A portion of the secular change of the geomagnetic field leads to a drift of the trapped belt South Atlantic Anomaly (SAA). If this drift is not taken into account, models of the trapped particle population give erroneous predictions of particle fluxes. The dose rates measured on two manned spacecrafts, Skylab (50 degrees inclination x 438 km orbit) and Mir orbital station (51.65 degrees inclination x 400 km orbit), were used to determine the drift rate of the SAA. The longitude and latitude drift rates of the SAA as a whole, between 1973 and 1995, were estimated to be 0.28 +/- 0.03 degrees W per year, and 0.08 +/- 0.03 degrees N per year, respectively. These measurements are consistent with determinations made using the AP8 models for radiation trapped belts and are in excellent agreement with drift rates observed for the geomagnetic field.


Assuntos
Magnetismo , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial , Astronave/instrumentação , Oceano Atlântico , Prótons , Doses de Radiação , América do Sul
7.
Biol Sci Space ; 11(4): 355-64, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11541770

RESUMO

Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.


Assuntos
Radiação Cósmica , Transferência Linear de Energia , Prótons , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Oceano Atlântico , Polietilenoglicóis , Doses de Radiação , Radiometria , América do Sul , Dosimetria Termoluminescente
8.
IEEE Trans Nucl Sci ; 44(6 Pt 3): 2529-41, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11542263

RESUMO

Models of the radiation belts that are currently used to estimate exposure for astronauts describe the environment at times of either solar minimum or solar maximum. Static models, constructed using data acquired prior to 1970 during a solar cycle with relatively low solar radio flux, have flux uncertainties of a factor of two to live and dose-rate uncertainties of a factor of about two. The inability of these static models to provide a dynamic description of the radiation belt environment limits our ability to predict radiation exposures for long-duration missions in low earth orbits. In an attempt to add some predictive capability of these models, we studied the measured daily absorbed dose rate on the Mir orbital station over roughly the complete 22nd solar cycle that saw some of the highest solar flux values in the last 40 y. We show that the daily trapped particle dose rate is an approximate power law function of daily atmospheric density. Atmospheric density values are in turn obtained from standard correlation with observed solar radio noise flux. This correlation improves, particularly during periods of high solar activity, if the density at roughly 400 days earlier time is used. This study suggests the possibility of a dose- and flux-predictive trapped-belt model based on atmospheric density.


Assuntos
Atmosfera , Radiação Cósmica , Modelos Teóricos , Prótons , Atividade Solar , Voo Espacial/instrumentação , Medicina Aeroespacial , Astronautas , Oceano Atlântico , Humanos , Doses de Radiação , América do Sul , Astronave/instrumentação , Ausência de Peso
9.
Jpn J Appl Phys ; 36(12A): 7453-9, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11542403

RESUMO

The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.


Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Astronave/instrumentação , Medicina Aeroespacial , Altitude , Oceano Atlântico , Calibragem , Transferência Linear de Energia , Doses de Radiação , Atividade Solar , América do Sul , Telemetria
10.
Radiat Meas ; 26(6): 901-16, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11540523

RESUMO

A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65 degrees inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 microGy with an average of 2265.8 microGy or 273.98 microGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 microGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 microGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 microGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1-20 MeV contributed 13 microGy/day and 156 microSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.


Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial , Oceano Atlântico , Transferência Linear de Energia , Modelos Teóricos , Doses de Radiação , Proteção Radiológica , Radiometria , Federação Russa , América do Sul , Astronave , Dosimetria Termoluminescente , Estados Unidos , United States National Aeronautics and Space Administration
11.
Radiat Meas ; 26(6): 935-45, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11540526

RESUMO

Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.


Assuntos
Radiação Cósmica , Transferência Linear de Energia , Prótons , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Oceano Atlântico , Polietilenoglicóis , Doses de Radiação , Monitoramento de Radiação/métodos , Radiometria , América do Sul , Astronave , Dosimetria Termoluminescente
12.
Radiat Meas ; 26(2): 147-58, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11539200

RESUMO

A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.


Assuntos
Radiação Cósmica , Transferência Linear de Energia , Modelos Teóricos , Prótons , Atividade Solar , Voo Espacial/instrumentação , Brasil , Nêutrons , Doses de Radiação , Monitoramento de Radiação/instrumentação , Radiometria/instrumentação
13.
Radiat Meas ; 24(2): 129-38, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-11539881

RESUMO

Measurements of the energy spectra of secondary particles produced by galactic cosmic rays and trapped protons due to the nuclear interactions of these particles with the Shuttle shielding provide a powerful tool for validating radiation transport codes. A code validated in this way can be used to better estimate the dose and dose equivalent to body organs, measurements that cannot be made directly. The principal cause of single event upsets in electronic devices in the region of the South Atlantic Anomaly is secondary particles, and even in the region of galactic cosmic radiation a significant fraction is produced by secondary particles. In this paper, we describe the first direct measurements of the energy spectra of secondary protons, deuterons, tritons, 3He and 4He produced by galactic cosmic rays inside the Space Shuttle using a charged particle spectrometer. A comparison of these spectra with radiation transport code HZETRN showed reasonably good agreement for secondary protons. However, the code seriously underestimated the flux of all other light ions. The code has been modified to include pick-up and knock-on processes. The modified code leads to good agreement for deuterons and 3He but not for other light ions. This revised code leads to about 10% higher dose equivalent than the original code under moderate shielding, if we assume that higher charge ion fluxes are correctly predicted by the model.


Assuntos
Radiação Cósmica , Interações de Partículas Elementares , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Astronave/instrumentação , Oceano Atlântico , Deutério , Processamento Eletrônico de Dados , Desenho de Equipamento , Meio Ambiente Extraterreno , Hélio , Transferência Linear de Energia , Modelos Teóricos , Prótons , América do Sul
14.
Adv Space Res ; 14(10): 67-72, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11540006

RESUMO

We have flown two new charged particle detectors in five recent Shuttle flights. In this paper we report on the dose rate, equivalent dose rate, and radiation quality factor for trapped protons and cosmic radiation separately. A comparison of the integral linear energy transfer (LET) spectra with recent transport code calculations show significant disagreement. Using the calculated dose rate from the omni-directional AP8MAX model with IGRF reference magnetic field epoch 1970, and observed dose rate as a function of (averaged over all geographic latitude) and longitude, we have determined the westward drift of the South Atlantic anomaly. We have also studied the east-west effect, and observed a 'second' radiation belt. A comparison of the galactic cosmic radiation lineal energy transfer spectra with model calculations shows disagreement comparable to those of the trapped protons.


Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Oceano Atlântico , Transferência Linear de Energia , Doses de Radiação , Monitoramento de Radiação/métodos , Monitoramento de Radiação/estatística & dados numéricos , Radiometria/instrumentação , América do Sul , Astronave/instrumentação
15.
Adv Space Res ; 14(10): 911-21, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11540035

RESUMO

Active instruments consisting of a tissue equivalent proportional counter (TEPC) and a proton and heavy ion detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of its features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestrial magnetic field the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at L approximately = 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect.


Assuntos
Atmosfera , Prótons , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Oceano Atlântico , Magnetismo , Doses de Radiação , Radiometria , América do Sul , Astronave/instrumentação
16.
Radiat Prot Dosimetry ; 52(1-4): 439-45, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-11537893

RESUMO

Two new charged particle detectors have been flown in five recent Shuttle flights. The tissue-equivalent proportional counter measures the lineal energy spectrum of space radiation in the 0.26-300 keV micrometer-1 range. The charged particle spectrometer is a double dE/dx x E and dE/dx x Chrenekov detector system which provides a measurement of the differential energy spectrum of protons from 13 to 350 MeV and dose rate in silicon. In this paper the dose rate, equivalent dose rate, and radiation, quality factor for trapped protons and cosmic radiation are reported on separately. A comparison of the integral LET spectra with recent transport code calculations shows significant disagreement. Using the calculated dose rate from the omnidirectional AP8MAX model with IGRF reference magnetic field epoch 1970, and observed dose rate as a function of geographic latitude and longitude, the westward drift of the south Atlantic anomaly has been determined. The east-west effect has also been studied and a 'second' radiation belt observed. A comparison of the galactic cosmic radiation (GCR) lineal energy transfer spectra with model calculations shows disagreement comparable with those of the trapped protons.


Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Oceano Atlântico , Transferência Linear de Energia , Doses de Radiação , Monitoramento de Radiação/métodos , Monitoramento de Radiação/estatística & dados numéricos , Radiometria/instrumentação , América do Sul , Astronave/instrumentação
17.
Geochim Cosmochim Acta ; 53: 3145-54, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-11539782

RESUMO

Volatile ratios (primarily of H2O and CO2) in individual silicate melt (glass) inclusions in minerals have been analyzed using laser volatilization and mass spectrometry. A Nd-glass laser was used to produce 50-micrometer diameter pits in silicate melt inclusions. Released volatiles were analyzed directly with a computer-controlled quadrupole mass spectrometer. The detection limits for CO2 and H2O were on the order of 3 x 10(-14) and 3 x 10(-13) moles, respectively. The reproducibility for CO2/H2O was better than +/- 9%. The total range of volatile ratios from vitreous silicate glass inclusions contained in a suite of Galapagos lavas were: 0.018 to 1.193 for CO2/H2O; 0.002 to 0.758 for CO/H2O; 0 to 0.454 for CH4/H2O; and 0 to 0.432 for Ar/H2O. The mean CO2/H2O from the propagating rift (0.245 +/- 0.068) silicate glass inclusions is significantly lower than that of the actively failing rift (0.641 +/- 0.241); this difference probably reflects different degrees of degassing during magmatic histories for the two regions. Relatively undifferentiated failing rift magmas must have relatively short crustal residence times prior to eruption and, therefore, have not undergone significant degassing of CO2, as would appear to be the case for the more highly fractionated propagating rift magmas. The laser-mass spectrometric system described herein has the ability to act as a point-source probing device that can differentiate between the various volatile sites in minerals and rocks (as well as synthetic materials) on a micrometer scale.


Assuntos
Carbono/análise , Hidrogênio/análise , Espectrometria de Massas/métodos , Minerais/química , Oxigênio/análise , Silicatos/química , Dióxido de Carbono/análise , Equador , Fenômenos Geológicos , Geologia , Lasers , Minerais/análise , Oceano Pacífico , Silicatos/análise , Volatilização , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA