RESUMO
Plant-fungus symbioses have functional relevance during plant growth and development. However, it is still unknown whether the endosphere fungi in mature plants originated from soils or seeds. To elucidate the origination of endosphere fungi in mature rice roots, the fungal communities in surface sterilized roots and shoots of mature rice plants germinated in soils, rhizosphere soils and seedlings germinated under sterile conditions were analyzed by Illumina-based sequencing and compared. Total 62 fungal OTUs shared in the seedlings, shoots and roots, 126 OTUs shared in the rhizosphere soils, shoots and roots. Fungal OTUs coexisted in the four types of samples belonged to genera of Rhizophagus, Trichoderma, Fusarium, Atractiella, Myrmecridium, Sporothrix, Microdochium, Massariosphaeria, and Phialemonium. The principle component analysis (PCA) and NMDS plot suggested that the fungal community structure in rhizosphere soils was different from that in seedlings significantly. Rhizosphere soil, shoot and root contained more similar fungal community. The fungal community in seedling was similar to that in shoot and root of mature plants. The results suggested that endophytic fungal communities in mature rice plants originated from both seedlings and rhizosphere soils, and more fungal taxa originated from rhizosphere soils. Mature rice plants contain mycobiome transmitted vertically from seeds, which suggests that inoculation of endophytic fungi isolated from seedlings might be an effective way to introduce beneficial fungal inoculants into rice plants successfully.
Assuntos
Fungos , Micobioma , Oryza , Raízes de Plantas , Rizosfera , Plântula , Microbiologia do Solo , Raízes de Plantas/microbiologia , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , FilogeniaRESUMO
The role of the oral microbiota in the overall health and in systemic diseases has gained more importance in the recent years, mainly due to the systemic effects that are mediated by the chronic inflammation caused by oral diseases, such as periodontitis, through the microbial communities of the mouth. The chronic infection by the human immunodeficiency virus (HIV) interacts at the tissue level (e.g. gut, genital tract, brain) to create reservoirs; the modulation of the gut microbiota by HIV infection is a good example of these interactions. The purpose of the present review is to assess the state of knowledge on the oral microbiota (microbiome, mycobiome and virome) of HIV-infected patients in comparison to that of HIV-negative individuals and to discuss the reciprocal influence of HIV infection and oral microbiota in patients with periodontitis on the potential establishment of a viral gingival reservoir. The influence of different clinical and biological parameters are reviewed including age, immune and viral status, potent antiretroviral therapies, smoking, infection of the airway and viral coinfections, all factors that can modulate the oral microbiota during HIV infection. The analysis of the literature proposed in this review indicates that the comparisons of the available studies are difficult due to their great heterogeneity. However, some important findings emerge: (i) the oral microbiota is less influenced than that of the gut during HIV infection, although some recurrent changes in the microbiome are identified in many studies; (ii) severe immunosuppression is correlated with altered microbiota and potent antiretroviral therapies correct partially these modifications; (iii) periodontitis constitutes a major factor of dysbiosis, which is exacerbated in HIV-infected patients; its pathogenesis can be described as a reciprocal reinforcement of the two conditions, where the local dysbiosis present in the periodontal pocket leads to inflammation, bacterial translocation and destruction of the supporting tissues, which in turn enhances an inflammatory environment that perpetuates the periodontitis cycle. With the objective of curing viral reservoirs of HIV-infected patients in the future years, it appears important to develop further researches aimed at defining whether the inflamed gingiva can serve of viral reservoir in HIV-infected patients with periodontitis.
Assuntos
Gengiva , Infecções por HIV , Microbiota , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Infecções por HIV/complicações , Infecções por HIV/virologia , Gengiva/microbiologia , Gengiva/virologia , Boca/microbiologia , Boca/virologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/virologia , Periodontite/microbiologia , Periodontite/virologia , Viroma , Disbiose/microbiologia , Antirretrovirais/uso terapêutico , HIVRESUMO
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of ß-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
RESUMO
This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.
RESUMO
Introduction. Medical device colonization by pathogenic microorganisms is a risk factor for increasing infections associated with health care and, consequently, the morbidity and mortality of intubated patients. In Colombia, fungal colonization of endotracheal tubes has not been described, and this information could lead to new therapeutic options for the benefit of patients. Objective. To describe the colonizing fungi of the endotracheal tubes from patients in the intensive care unit, along with its antifungal sensitivity profile. Materials and methods. We conducted a descriptive, observational study in two health centers for 12 months. Endotracheal tubes were collected from patients in intensive care units. Samples were processed for culture, fungi identification, and antifungal sensitivity profile assessment. Results. A total of 121 endotracheal tubes, obtained from 113 patients, were analyzed: 41.32 % of the tubes were colonized by Candida albicans (64.62%), C. nonalbicans (30.77%), Cryptococcus spp. (3.08%) or molds (1.54%). All fungi evaluated showed a high sensitivity to antifungals, with a mean of 91%. Conclusion. Fungal colonization was found in the endotracheal tubes of patients under invasive mechanical ventilation. The antifungal sensitivity profile in these patients was favorable. A clinical study is required to find possible correlations between the colonizing microorganisms and infectivity.
Introducción. La colonización por microorganismos patógenos de los dispositivos médicos usados en las unidades de cuidados intensivos es un factor de riesgo para el aumento de infecciones asociadas con la atención en salud y, por lo tanto, al de la morbilidad y la mortalidad de los pacientes intubados. En Colombia, no se ha descrito la colonización por hongos de los tubos endotraqueales, con lo cual se podrían considerar nuevas opciones terapéuticas para el beneficio de los pacientes. Objetivo. Describir los hongos que colonizan los tubos endotraqueales de los pacientes en unidades de cuidados intensivos, junto con su perfil de sensibilidad a los antifúngicos. Materiales y métodos. Se realizó un estudio observacional, descriptivo, en dos centros hospitalarios durante 12 meses. Se recolectaron tubos endotraqueales de pacientes de las unidades de cuidados intensivos. Estos fueron procesados para cultivar e identificar hongos, y para establecer su perfil de sensibilidad a los antifúngicos. Resultados. Se analizaron 121 tubos endotraqueales obtenidos de 113 pacientes. De estos, el 41,32 % se encontró colonizado por los hongos Candida albicans (64,61 %), C. no-albicans (30,77 %), Cryptococcus spp. (3,08 %) o mohos (1,54 %). Todos los hongos evaluados presentaron una gran sensibilidad a los antifúngicos, con un promedio del 91 %. Conclusión. Se encontró colonización fúngica en los tubos endotraqueales de pacientes con asistencia respiratoria mecánica. El perfil de sensibilidad en estos pacientes fue favorable. Se requiere un estudio clínico para correlacionar los microorganismos colonizadores y su capacidad de generar infección.
Assuntos
Candida albicans , Granisetron , Colômbia , TolnaftatoRESUMO
Intestinal fungi play an important role in the health-disease process. We observed that in liver diseases, fungal infections lead to high mortality. In this review, we were able to gather and evaluate the available scientific evidence on intestinal mycobiota and liver diseases. We searched PubMed and Embase, using a combination of several entry terms. Only studies in adults ≥ 18 years old with liver disease and published after 2010 were included. We observed that individuals with liver disease have an altered intestinal mycobioma, which accompanies the progression of these diseases. In cirrhotic patients, there are a high number of Candida sp. strains, especially Candida albicans. In early chronic liver disease, there is an increase in alpha diversity at the expense of Candida sp. and conversely, in advanced liver disease, there is a negative correlation between alpha diversity and model for end-stage liver disease score. On the other hand, patients with non-alcoholic fatty liver disease demonstrate greater diversity compared to controls. Our study concluded that the evidence on the subject is sparse, with few studies and a lack of standardization of outcome measures and reporting, and it was not possible to perform a meta-analysis capable of synthesizing relevant parameters of the human mycobiotic profile. However, certain fungal genera such as Candida play an important role in the context of liver disease and that adults with liver disease have a distinct gut mycobiotic profile from healthy controls.
In people with end-stage liver disease, there is a high mortality from fungal infections. In this context, the genus Candida plays an important role in the context of liver disease, and adults with liver disease have a distinct gut mycobiota profile from healthy controls.
Assuntos
Doença Hepática Terminal , Microbioma Gastrointestinal , Hepatopatias , Micobioma , Humanos , Animais , Fungos , Doença Hepática Terminal/veterinária , Índice de Gravidade de Doença , Candida albicans , Hepatopatias/veterináriaRESUMO
There is growing evidence of the role of fungal microbiota in the pathogenesis of inflammatory bowel disease (IBD). Fungi can exert direct pro-inflammatory effects or modify the bacterial composition via interkingdom interactions. Although several studies have demonstrated alterations in the fecal fungal microbiota composition in IBD, there is a wide variation in the mycobiome in different populations, with no definite pattern that can define the mycobiome in IBD having yet been identified. Recent work has suggested that characterizing the fecal fungal composition may influence therapeutic decisions and help to predict outcomes in a subset of IBD patients. In this study, we review the current literature on the emerging role of the fecal mycobiome as a potential tool for precision medicine in IBD.
Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Micobioma , Humanos , Medicina de Precisão , Doenças Inflamatórias Intestinais/microbiologia , FezesRESUMO
Mixed tree plantations have been studied because of their potential to improve biomass production, ecosystem diversity, and soil quality. One example is a mixture of Eucalyptus and Acacia trees, which is a promising strategy to improve microbial diversity and nutrient cycling in soil. We examined how a mixture of these species may influence the biochemical attributes and fungal community associated with leaf litter, and the effects on litter decomposition. We studied the litter from pure and mixed plantations, evaluating the effects of plant material and incubation site on the mycobiome and decomposition rate using litterbags incubated in situ. Our central hypothesis was litter fungal community would change according to incubation site, and it would interfere in litter decomposition rate. Both the plant material and the incubation locale significantly affected the litter decomposition. The origin of the litter was the main modulator of the mycobiome, with distinct communities from one plant species to another. The community changed with the incubation time but the incubation site did not influence the mycobiome community. Our data showed that litter and soil did not share the main elements of the community. Contrary to our hypothesis, the microbial community structure and diversity lacked any association with the decomposition rate. The differences in the decomposition pattern are explained basically as a function of the exchange of nitrogen compounds between the litter.
RESUMO
Introducción: La paracoccidioidomicosis, es una micosis endémica en diferentes países de latinoamérica, incluyendo zonas de Colombia, con manifestación clínica muy variada ya que es considerada una enfermedad que puede ser crónica y sistémica. Objetivos: Exponer la importancia del examen clínico-estomatológico en la detección de diferentes entidades en sistema estomatognático, y el manejo multidisciplinario de paracoccidioidomicosis oral y sistémica. Caso clínico: paciente masculino en sexta década de vida, el cual presenta glosalgia y dolor de región ocular. Clínicamente presenta lesión de tipo granulomatoso en bordes laterales de lengua con evolución de hace 1 año aproximadamente, el resultado de la biopsia es paracoccidioidomicosis, se inicia manejo multidisciplinario con medicamentos intravenosos y orales, luego de 10 meses presenta resolución de este. Conclusiones: un buen interrogatorio, análisis de cuadro clínico y exámenes complementarios, son claves para un diagnóstico temprano y tratamiento oportuno, preservando la vida del paciente, especialmente en infecciones oportunistas como la paracoccidioidomicosis.
Introdução: A paracoccidioidomicose é uma micose endêmica em diferentes países da América Latina, incluindo áreas da Colômbia, com manifestação clínica muito variada por ser considerada uma doença que pode ser crônica e sistêmica. Objetivos: Expor a importância do exame clínico-estomatológico na detecção de diferentes entidades do sistema estomatognático e no manejo multidisciplinar da paracoccidioidomicose oral e sistêmica. Caso clínico: paciente do sexo masculino na sexta década de vida, que apresentava glossalgia e dor na região ocular. Clinicamente apresenta lesão tipo granulomatosa nas bordas laterais da língua com evolução de aproximadamente 1 ano, resultado da biópsia é paracoccidioidomicose, inicia-se manejo multidisciplinar com medicações endovenosas e orais, após 10 meses resolve. Conclusões: um bom questionamento, análise do quadro clínico e exames complementares são fundamentais para o diagnóstico precoce e tratamento oportuno, preservando a vida do paciente, principalmente nas infecções oportunistas como a paracoccidioidomicose.
Introduction: Paracoccidioidomycosis is an endemic mycosis in different Latin American countries, including areas of Colombia, with a very varied clinical manifestation since it is considered a disease that can be chronic and systemic. Objectives: To expose the importance of the clinical-stomatological examination in the detection of different entities in the stomatognathic system, and the multidisciplinary management of oral and systemic paracoccidioidomycosis. Clinical case: male patient in the sixth decade of life, who presented glossalgia and pain in the ocular region. Clinically, it presents a granulomatous-type lesion on the lateral edges of the tongue with evolution of approximately 1 year ago, the result of the biopsy is paracoccidioidomycosis, multidisciplinary management is started with intravenous and oral medications, after 10 months it resolves. Conclusions: a good questioning, analysis of the clinical picture and complementary tests are key to early diagnosis and timely treatment, preserving the patient's life, especially in opportunistic infections such as paracoccidioidomycosis.
RESUMO
Introducción. La colonización por microorganismos patógenos de los dispositivos médicos usados en las unidades de cuidados intensivos es un factor de riesgo para el aumento de infecciones asociadas con la atención en salud y, por lo tanto, al de la morbilidad y la mortalidad de los pacientes intubados. En Colombia, no se ha descrito la colonización por hongos de los tubos endotraqueales, con lo cual se podrían considerar nuevas opciones terapéuticas para el beneficio de los pacientes. Objetivo. Describir los hongos que colonizan los tubos endotraqueales de los pacientes en unidades de cuidados intensivos, junto con su perfil de sensibilidad a los antifúngicos. Materiales y métodos. Se realizó un estudio observacional, descriptivo, en dos centros hospitalarios durante 12 meses. Se recolectaron tubos endotraqueales de pacientes de las unidades de cuidados intensivos. Estos fueron procesados para cultivar e identificar hongos, y para establecer su perfil de sensibilidad a los antifúngicos. Resultados. Se analizaron 121 tubos endotraqueales obtenidos de 113 pacientes. De estos, el 41,32 % se encontró colonizado por los hongos Candida albicans (64,61 %), C. no-albicans (30,77 %), Cryptococcus spp. (3,08 %) o mohos (1,54 %). Todos los hongos evaluados presentaron una gran sensibilidad a los antifúngicos, con un promedio del 91 %. Conclusión. Se encontró colonización fúngica en los tubos endotraqueales de pacientes con asistencia respiratoria mecánica. El perfil de sensibilidad en estos pacientes fue favorable. Se requiere un estudio clínico para correlacionar los microorganismos colonizadores y su capacidad de generar infección.
Introduction. Medical device colonization by pathogenic microorganisms is a risk factor for increasing infections associated with health care and, consequently, the morbidity and mortality of intubated patients. In Colombia, fungal colonization of endotracheal tubes has not been described, and this information could lead to new therapeutic options for the benefit of patients. Objective. To describe the colonizing fungi of the endotracheal tubes from patients in the intensive care unit, along with its antifungal sensitivity profile. Materials and methods. We conducted a descriptive, observational study in two health centers for 12 months. Endotracheal tubes were collected from patients in intensive care units. Samples were processed for culture, fungi identification, and antifungal sensitivity profile assessment. Results. A total of 121 endotracheal tubes, obtained from 113 patients, were analyzed: 41.32 % of the tubes were colonized by Candida albicans (64.62%), C. non-albicans (30.77%), Cryptococcus spp. (3.08%) or molds (1.54%). All fungi evaluated showed a high sensitivity to antifungals, with a mean of 91%. Conclusion. Fungal colonization was found in the endotracheal tubes of patients under invasive mechanical ventilation. The antifungal sensitivity profile in these patients was favorable. A clinical study is required to find possible correlations between the colonizing microorganisms and infectivity.
Assuntos
Microbiota , Intubação Intratraqueal , Pneumonia Associada à Ventilação Mecânica , Micobioma , Unidades de Terapia IntensivaRESUMO
Dendroctonus-bark beetles are associated with microbes that can detoxify terpenes, degrade complex molecules, supplement and recycle nutrients, fix nitrogen, produce semiochemicals, and regulate ecological interactions between microbes. Females of some Dendroctonus species harbor microbes in specialized organs called mycetangia; yet little is known about the microbial diversity contained in these structures. Here, we use metabarcoding to characterize mycetangial fungi from beetle species in the Dendroctonus frontalis complex, and analyze variation in biodiversity of microbial assemblages between beetle species. Overall fungal diversity was represented by 4 phyla, 13 classes, 25 orders, 39 families, and 48 genera, including 33 filamentous fungi, and 15 yeasts. The most abundant genera were Entomocorticium, Candida, Ophiostoma-Sporothrix, Ogataea, Nakazawaea, Yamadazyma, Ceratocystiopsis, Grosmannia-Leptographium, Absidia, and Cyberlindnera. Analysis of α-diversity indicated that fungal assemblages of D. vitei showed the highest richness and diversity, whereas those associated with D. brevicomis and D. barberi had the lowest richness and diversity, respectively. Analysis of ß-diversity showed clear differentiation in the assemblages associated with D. adjunctus, D. barberi, and D. brevicomis, but not between closely related species, including D. frontalis and D. mesoamericanus and D. mexicanus and D. vitei. A core mycobiome was not statistically identified; however, the genus Ceratocystiopsis was shared among seven beetle species. Interpretation of a tanglegram suggests evolutionary congruence between fungal assemblages and species of the D. frontalis complex. The presence of different amplicon sequence variants (ASVs) of the same genus in assemblages from species of the D. frontalis complex outlines the complexity of molecular networks, with the most complex assemblages identified from D. vitei, D. mesoamericanus, D. adjunctus, and D. frontalis. Analysis of functional variation of fungal assemblages indicated multiple trophic groupings, symbiotroph/saprotroph guilds represented with the highest frequency (â¼31% of identified genera). These findings improve our knowledge about the diversity of mycetangial communities in species of the D. frontalis complex and suggest that minimal apparently specific assemblages are maintained and regulated within mycetangia.
RESUMO
Endophytic fungi are microorganisms that colonize the interior of plant tissues (e.g. leaves, seeds, stem, trunk, roots, fruits, flowers) in intracellular and/or extracellular spaces without causing symptoms of disease in host plants. These microorganisms have been isolated from plant species in a wide variety of habitats worldwide, and it is estimated that all terrestrial plants are colonized by one or more species of endophytic fungus. In addition, these microorganisms have been drawing the attention of researchers because of their ability to synthesize a wide range of bioactive molecules with potential for applications in agriculture, medicine and biotechnology. However, several obstacles come up when studying the diversity and chemical potential of endophytic fungi. For example, the usage of an inappropriate surface disinfection method for plant tissue may not eliminate the epiphytic microbiota or may end up interfering with the endophytic mycobiota, which consequently generates erroneous results. Moreover, the composition of the culture medium and the culture conditions can favor the growth of certain species and inhibit others, which generates underestimated results. Other inconsistencies can arise from the fungus misidentification and consequent exploration of its chemical potential. Based on the methodological biases that may occur at all stages of studies dealing with endophytic fungi, the objective of this review is to discuss the main methods employed in these studies as well as highlight the challenges derived from the different approaches. We also report associated tips to help future studies on endophytic fungi as a contribution.
Assuntos
Endófitos , Fungos , Plantas/microbiologia , Raízes de Plantas/microbiologia , Folhas de Planta/microbiologiaRESUMO
A plant's health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant-microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.
RESUMO
Extensive flooding caused by Hurricane María in Puerto Rico (PR) created favorable conditions for indoor growth of filamentous fungi. These conditions represent a public health concern as contamination by environmental fungi is associated with a higher prevalence of inflammatory respiratory conditions. This work compares culturable fungal spore communities present in homes that sustained water damage after Hurricane María to those present in dry, non-flooded homes. We collected air samples from 50 houses in a neighborhood in San Juan, PR, 12 and 22 months after Hurricane María. Self-reported data was used to classify the homes as flooded, water-damage or dry non-flooded. Fungi abundances, composition and diversity were analyzed by culturing on two media. Our results showed no significant differences in indoor fungal concentrations (CFU/m3) one year after the Hurricane in both culture media studied (MEA and G25N). During the second sampling period fungal levels were 2.7 times higher in previously flooded homes (Median = 758) when compared to dry homes (Median = 283), (p-value < 0.005). Fungal profiles showed enrichment of Aspergillus species inside flooded homes compared to outdoor samples during the first sampling period (FDR-adjusted p-value = 0.05). In contrast, 22 months after the storm, indoor fungal composition consisted primarily of non-sporulated fungi, most likely basidiospores, which are characteristic of the outdoor air in PR. Together, this data highlights that homes that suffered water damage not only have higher indoor proliferation of filamentous fungi, but their indoor fungal populations change over time following the Hurricane. Ultimately, after nearly two years, indoor and outdoor fungal communities converged in this sample of naturally ventilated homes.
Assuntos
Tempestades Ciclônicas , Humanos , Porto Rico , Microbiologia do Ar , Monitoramento Ambiental/métodos , Fungos , Esporos Fúngicos , Proliferação de CélulasRESUMO
Diagnosis by clinical mycology laboratory plays a critical role in patient care by providing definitive knowledge of the cause of infection and antimicrobial susceptibility data to physicians. Rapid diagnostic methods are likely to improve patient. Aggressive resuscitation bundles, adequate source control, and appropriate antibiotic therapy are cornerstones for success in the treatment of patients. Routine methods for identifying clinical specimen fungal pathogen are based on the cultivation on different media with the subsequent examination of its phenotypic characteristics comprising a combination of microscopic and colony morphologies. As some fungi cannot be readily identified using these methods, molecular diagnostic methods may be required. These methods are fast, but it can cost a lot. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs. It can be considered an alternative for conventional biochemical and molecular identification systems in a microbiological laboratory. The reliability and accuracy of this method have been scrutinized in many surveys and have been compared with several methods including sequencing and molecular methods. According to these findings, the reliability and accuracy of this method are very high and can be trusted. With all the benefits of this technique, the libraries of MALDI-TOF MS need to be strengthened to enhance its performance. This review provides an overview of the most recent research literature that has investigated the applications and usage of MT-MS to the identification of microorganisms, mycotoxins, antifungal susceptibility examination, and mycobiome research.
Assuntos
Laboratórios , Micologia , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Whereas targeted and shotgun sequencing approaches are both powerful in allowing the study of tissue-associated microbiota, the human: microorganism abundance ratios in tissues of interest will ultimately determine the most suitable sequencing approach. In addition, it is possible that the knowledge of the relative abundance of bacteria and fungi during a treatment course or in pathological conditions can be relevant in many medical conditions. Here, we present a qPCR-targeted approach to determine the absolute and relative amounts of bacteria and fungi and demonstrate their relative DNA abundance in nine different human tissue types for a total of 87 samples. In these tissues, fungi genomes are more abundant in stool and skin samples but have much lower levels in other tissues. Bacteria genomes prevail in stool, skin, oral swabs, saliva, and gastric fluids. These findings were confirmed by shotgun sequencing for stool and gastric fluids. This approach may contribute to a more comprehensive view of the human microbiota in targeted studies for assessing the abundance levels of microorganisms during disease treatment/progression and to indicate the most informative methods for studying microbial composition (shotgun versus targeted sequencing) for various samples types.
Assuntos
Bactérias , Metagenômica , Bactérias/genética , DNA Fúngico , Fungos/genética , Humanos , Metagenômica/métodos , Análise de Sequência de DNARESUMO
Few data exist on the human gut mycobiome in relation to lifestyle, ethnicity, and dietary habits. To understand the effect of these factors on the structure of the human gut mycobiome, we analyzed sequences belonging to two extinct pre-Columbian cultures inhabiting Puerto Rico (the Huecoid and Saladoid) and compared them to coprolite samples found in Mexico and Ötzi, the Iceman's large intestine. Stool mycobiome samples from extant populations in Peru and urban cultures from the United States were also included. The ancient Puerto Rican cultures exhibited a lower fungal diversity in comparison to the extant populations. Dissimilarity distances showed that the Huecoid gut mycobiome resembled that from ancient Mexico. Fungal genera including Aspergillus spp., Penicillium spp., Rasamsonia spp., Byssochlamys spp., Talaromyces spp., Blastomyces spp., Monascus spp., and Penicilliopsis spp. were differentially abundant in the ancient and extant populations. Despite cultural differences, certain fungal taxa were present in all samples. These results suggest that culture and diet may impact the gut mycobiome and emphasize that modern lifestyles could be associated with the alteration of gut mycobiome diversity. The present study presents data on ancient and extant human gut mycobiomes in terms of lifestyle, ethnicity, and diet in the Americas.
RESUMO
Introduction: The majority of pregnant women with a short cervix will deliver at term and, thus, may unnecessarily receive advanced monitoring and treatment. It is still necessary to define more accurately which sub-population of women with a short cervix is at elevated risk for early delivery. Objective: To determine if vaginal microbiome composition influenced the rate of spontaneous preterm birth in women with a short cervical length. Methods: In an exploratory, observational prospective study, vaginal secretions were obtained from 591 women at 2124 week gestation. Vaginal microbiome composition was determined by analyzing the V1V3 region of the bacterial 16S ribosomal RNA gene. Results: Lactobacillus crispatus was numerically dominant in the vagina in 41.7% of subjects, followed by L. iners in 32% and Gardnerella vaginalis in 12%. In women whose cervix was ≤25mm, the sensitivity to predict an spontaneous preterm birth was 11.8%. However, when L. crispatus was not the dominant vaginal bacterium, this sensitivity increased to 81.8%. Similarly, in women with a cervical length ≤30mm, the sensitivity to predict an spontaneous preterm birth increased from 21.7 to 78.3% when L. crispatus was not the dominant vaginal bacterium.In women with a prior spontaneous preterm birth and a cervix ≤25 or ≤30mm, L. crispatus dominance was also associated with a reduced rate of spontaneous preterm birth in the current pregnancy (p<0.001). Conclusion: In pregnant women with a cervix ≤25mm or ≤30mm, the risk for an spontaneous preterm birth is increased if L. crispatus is not dominant in the vagina.
Introdução: A maioria das mulheres grávidas com colo do útero curto dará à luz a termo e, portanto, pode receber desnecessariamente monitoramento e tratamento avançados. Permanece a necessidade de definir com mais precisão qual subpopulação de mulheres com colo do útero curto está em risco elevado de parto prematuro. Objetivo: Determinar se a composição do microbioma vaginal influenciou a taxa de parto prematuro espontâneo em mulheres com colo curto. Métodos: Em um estudo prospectivo exploratório observacional, os conteúdos vaginais foram obtidos de 591 mulheres com 2124 semanas de gestação. A composição do microbioma vaginal foi determinada pela análise da região V1V3 do gene de RNA ribossômico bacteriano 16S. Resultados: Lactobacilluscrispatus foi numericamente dominante na vagina em 41,7% dos indivíduos, seguido por L. iners em 32% e Gardnerella vaginalis em 12%. Em mulheres cujo colo do útero era <25 mm, a sensibilidade para prever uma taxa de parto prematuro espontâneo foi de 11,8%. No entanto, quando L. crispatus não era a bactéria vaginal dominante, essa sensibilidade aumentou para 81,8%. Da mesma forma, em mulheres com comprimento cervical <30 mm, a sensibilidade para prever uma taxa de parto prematuro espontâneo aumentou de 21,7 para 78,3% quando L. crispatus não era a bactéria vaginal dominante. Em mulheres com taxa de parto prematuro espontâneo anterior e colo do útero <25 ou <30 mm, a dominância de L. crispatus também foi associada a uma taxa reduzida de taxa de parto prematuro espontâneo na gravidez atual (p<0,001). Conclusão: Em mulheres grávidas com colo do útero <25 ou <30 mm, o risco de parto prematuro espontâneo é aumentado se L. crispatus não for dominante na vagina.
Assuntos
Humanos , Feminino , Gravidez , Vagina/microbiologia , Microbiota , Lactobacillus crispatus , Trabalho de Parto Prematuro , Estudos Prospectivos , Medida do Comprimento CervicalRESUMO
Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.
Assuntos
Formigas , Animais , Formigas/microbiologia , Biotecnologia , Fungos , Filogenia , Simbiose , LevedurasRESUMO
The study of microbes associated with the coffee tree has been gaining strength in recent years. In this work, we compared the leaf mycobiome of the traditional crop Coffea arabica with wild species Coffea racemosa and Coffea stenophylla using ITS sequencing for qualitative information and real-time PCR for quantitative information, seeking to relate the mycobiomes with the content of caffeine and chlorogenic acid in leaves. Dothideomycetes, Wallemiomycetes, and Tremellomycetes are the dominant classes of fungi. The core leaf mycobiome among the three Coffea species is formed by Hannaella, Cladosporium, Cryptococcus, Erythrobasidium, and Alternaria. A network analysis showed that Phoma, an important C. arabica pathogen, is negatively related to six fungal species present in C. racemosa and C. stenophylla and absent in C. arabica. Finally, C. arabica have more than 35 times the concentration of caffeine and 2.5 times the concentration of chlorogenic acid than C. stenophylla and C. racemosa. The relationship between caffeine/chlorogenic acid content, the leaf mycobiome, and genotype pathogen resistance is discussed.