Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neurochir (Wien) ; 166(1): 240, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814348

RESUMO

BACKGROUND: Intracranial pressure (ICP) monitoring plays a key role in patients with traumatic brain injury (TBI), however, cerebral hypoxia can occur without intracranial hypertension. Aiming to improve neuroprotection in these patients, a possible alternative is the association of Brain Tissue Oxygen Pressure (PbtO2) monitoring, used to detect PbtO2 tension. METHOD: We systematically searched PubMed, Embase and Cochrane Central for RCTs comparing combined PbtO2 + ICP monitoring with ICP monitoring alone in patients with severe or moderate TBI. The outcomes analyzed were mortality at 6 months, favorable outcome (GOS ≥ 4 or GOSE ≥ 5) at 6 months, pulmonary events, cardiovascular events and sepsis rate. RESULTS: We included 4 RCTs in the analysis, totaling 505 patients. Combined PbtO2 + ICP monitoring was used in 241 (47.72%) patients. There was no significant difference between the groups in relation to favorable outcome at 6 months (RR 1.17; 95% CI 0.95-1.43; p = 0.134; I2 = 0%), mortality at 6 months (RR 0.82; 95% CI 0.57-1.18; p = 0.281; I2 = 34%), cardiovascular events (RR 1.75; 95% CI 0.86-3.52; p = 0.120; I2 = 0%) or sepsis (RR 0.75; 95% CI 0.25-2.22; p = 0.604; I2 = 0%). The risk of pulmonary events was significantly higher in the group with combined PbtO2 + ICP monitoring (RR 1.44; 95% CI 1.11-1.87; p = 0.006; I2 = 0%). CONCLUSIONS: Our findings suggest that combined PbtO2 + ICP monitoring does not change outcomes such as mortality, functional recovery, cardiovascular events or sepsis. Furthermore, we found a higher risk of pulmonary events in patients undergoing combined monitoring.


Assuntos
Lesões Encefálicas Traumáticas , Pressão Intracraniana , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/fisiopatologia , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/diagnóstico , Pressão Intracraniana/fisiologia , Monitorização Fisiológica/métodos , Monitorização Neurofisiológica/métodos , Oxigênio/análise , Oxigênio/metabolismo
2.
J Cereb Blood Flow Metab ; 43(11): 2008-2010, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632340

RESUMO

Cerebral perfusion pressure (CPP) is calculated as the difference between mean arterial blood pressure and mean intracranial pressure, being commonly applied in neurocritical care. This commentary discusses recent physiological advances in knowledge as well as bedside practice issues that in combination indicate considering CPP under this perspective may lead to inaccurate assumptions and potentially misleading decision making.


Assuntos
Pressão Arterial , Circulação Cerebrovascular , Circulação Cerebrovascular/fisiologia , Pressão Arterial/fisiologia , Pressão Intracraniana/fisiologia , Homeostase/fisiologia , Pressão Sanguínea/fisiologia
3.
Front Pediatr ; 11: 1111347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187586

RESUMO

Continuous neuromonitoring in the neonatal intensive care unit allows for bedside assessment of brain oxygenation and perfusion as well as cerebral function and seizure identification. Near-infrared spectroscopy (NIRS) reflects the balance between oxygen delivery and consumption, and use of multisite monitoring of regional oxygenation provides organ-specific assessment of perfusion. With understanding of the underlying principles of NIRS as well as the physiologic factors which impact oxygenation and perfusion of the brain, kidneys and bowel, changes in neonatal physiology can be more easily recognized by bedside providers, allowing for appropriate, targeted interventions. Amplitude-integrated electroencephalography (aEEG) allows continuous bedside evaluation of cerebral background activity patterns indicative of the level of cerebral function as well as identification of seizure activity. Normal background patterns are reassuring while abnormal background patterns indicate abnormal brain function. Combining brain monitoring information together with continuous vital sign monitoring (blood pressure, pulse oximetry, heart rate and temperature) at the bedside may be described as multi-modality monitoring and facilitates understanding of physiology. We describe 10 cases in critically ill neonates that demonstrate how comprehensive multimodal monitoring provided greater recognition of the hemodynamic status and its impact on cerebral oxygenation and cerebral function thereby informing treatment decisions. We anticipate that there are numerous other uses of NIRS as well as NIRS in conjunction with aEEG which are yet to be reported.

4.
J Neurosci Methods ; 373: 109561, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301006

RESUMO

BACKGROUND: Intracranial hypertension (HI) is associated with worse neurological outcomes and higher mortality. Although there are several experimental models of HI, in this article we present a reproducible, reversible, and reliable model of intracranial hypertension, with continuous multimodal monitoring. NEW METHOD: A reversible intracranial hypertension model in swine with multimodal monitoring including intracranial pressure, arterial blood pressure, heart rate variation, brain tissue oxygenation, and electroencephalogram is developed to understand the relationship of ICP and EEG. By inflating and deflating a balloon, located 20 mm anterior to the coronal suture and a 15 mm sagittal suture, we generate intracranial hypertension events and simultaneously measure intracranial pressure and oxygenation in the contralateral hemisphere and the EEG, simulating the usual configuration in humans. RESULTS: We completed 5 experiments and in all of them, we were able to complete at least 6 events of intracranial hypertension in a stable and safe way. For events of 20-40 mmHg of ICP we need an median (IQR) of 4.2 (3.64) ml of saline solution into the Foley balloon, a median (IQR) infusion time of 226 (185) second in each event and for events of 40-50 mmHg of ICP we need a median (IQR) of 5.1 (4.66) ml of saline solution, a median (IQR) infusion time of 280 (48) seconds and a median (IQR). The median (IQR) maintenance time was 352 (77) seconds and 392 (166) seconds for 20-40 mmHg and 40-50 mmHg of ICP, respectively. COMPARISON WITH EXISTING METHOD(S): Existing methods do not include EEG measures and do not present the reversibility of intracranial hypertension. CONCLUSIONS: Our model is fully reproducible, it is capable of generating reversible focal intracranial hypertension through strict control of the injected volume, it is possible to generate different infusion rates of the volume in the balloon, in order to generate different scenarios, the data obtained are sufficient to determine the brain complacency in real time. and useful for understanding the pathophysiology of ICP and the relationship between ICP (CPP) and EEG.


Assuntos
Hipertensão Intracraniana , Animais , Encéfalo , Eletroencefalografia , Frequência Cardíaca , Hipertensão Intracraniana/etiologia , Pressão Intracraniana/fisiologia , Suínos
5.
Front Pediatr ; 9: 755144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35402367

RESUMO

Neonatology has experienced a significant reduction in mortality rates of the preterm population and critically ill infants over the last few decades. Now, the emphasis is directed toward improving long-term neurodevelopmental outcomes and quality of life. Brain-focused care has emerged as a necessity. The creation of neonatal neurocritical care units, or Neuro-NICUs, provides strategies to reduce brain injury using standardized clinical protocols, methodologies, and provider education and training. Bedside neuromonitoring has dramatically improved our ability to provide assessment of newborns at high risk. Non-invasive tools, such as continuous electroencephalography (cEEG), amplitude-integrated electroencephalography (aEEG), and near-infrared spectroscopy (NIRS), allow screening for seizures and continuous evaluation of brain function and cerebral oxygenation at the bedside. Extended and combined uses of these techniques, also described as multimodal monitoring, may allow practitioners to better understand the physiology of critically ill neonates. Furthermore, the rapid growth of technology in the Neuro-NICU, along with the increasing use of telemedicine and artificial intelligence with improved data mining techniques and machine learning (ML), has the potential to vastly improve decision-making processes and positively impact outcomes. This article will cover the current applications of neuromonitoring in the Neuro-NICU, recent advances, potential pitfalls, and future perspectives in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA