RESUMO
Systems chemistry aims to develop molecular systems that display emerging properties arising from their network and absent in their individual constituents. Employing reversible chemistry under thermodynamic control represents a valuable tool for generating dynamic combinatorial libraries of interconverting molecules, which may exhibit intriguing collective behaviour. A simple dynamic combinatorial library was prepared using dithioacetal / thiol / disulfide exchanges. Because of the relative reactivities of these reversible reactions, the library constitutes a two-layer dynamic system with one layer active in an acid medium (thiol/dithioacetal exchange) and one layer active in a basic medium (thiol/disulfide exchange). This property enables the system to respond to momentary changes in acidity of the medium by activating different network regions, channeling some building blocks from one layer to another through shared thiol reagents (nodes). This momentaneous change in wiring affects the final steady state composition of the library, measured the next day, even though the event that caused it vanishes without leaving any residue. Therefore, the final composition of this dynamic system provides information about this transient past perturbation in the environment such as: when it occurred, how long it was, or how intense it was.
RESUMO
Piper aduncum L. is widely distributed in tropical regions and the ethnobotanical uses of this species encompass medicinal applications for the treatment of respiratory, antimicrobial, and gynecological diseases. Chemical studies reveal a diverse array of secondary metabolites, including terpenes, flavonoids, and prenylated compounds. Extracts from P. aduncum have shown antibacterial, antifungal, and larvicidal activities. Our study explores the activity of extracts and partitions against Mycobacterium tuberculosis H37Rv, as well as the chemical diversity of the bioactive partition. This marks the first investigation of the bioactive partition of P. aduncum from agroecological cultivation. The ethyl acetate partition from the ethanolic leaf extract (PAEPL) was found to be the most active. PAEPL was subjected to column chromatography using Sephadex LH-20 and the obtained fractions were analyzed using UHPLC-HRMS/MS. The MS/MS data from the fractions were submitted to the online GNPS platform for the generation of the molecular network, which displayed 1714 nodes and 167 clusters. Compounds were identified via manual inspection and different libraries, allowing the annotation of 83 compounds, including flavonoids, benzoic acid derivatives, glycosides, free fatty acids, and glycerol-esterified fatty acids. This study provides the first chemical fingerprint of an antimycobacterial sample from P. aduncum cultivated in an agroecological system.
Assuntos
Piper , Extratos Vegetais , Espectrometria de Massas em Tandem , Piper/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Folhas de Planta/química , Flavonoides/química , Flavonoides/análise , Testes de Sensibilidade MicrobianaRESUMO
Endophytic fungi have been recognized as a valuable source for the production of biologically active compounds with potential applications in various domains. This study aimed to isolate endophytic fungi from Ampelopsis japonica (Thunb.) Makino and assess their anti-MRSA activity. Meanwhile, chromatographic separation techniques were applied to analyze the constituents of endophytic fungal secondary metabolites. The isolate BLR24, which exhibited strong inhibition activity against MRSA, was identified as Trichoderma virens based on morphological characteristics and ITS sequence analyses. The ethyl acetate extract of BLR24 (EA-BLR24) showed good anti-MRSA activity with the MIC and MBC values of 25 µg/mL and 50 µg/mL, separately. The inhibition of biofilm formation was up to 34.67% under MIC concentration treatment. Meanwhile, EA-BLR24 could significantly reduce the expression of biofilm-related genes (icaA, sarA, and agrA) of MRSA. Based on LC-MS/MS analysis, twenty compounds in EA-BLR24 could be annotated using the GNPS platform, mainly diketopiperazines. The anti-MRSA compound (Fr.1.1) was obtained from EA-BLR24 by bioassay-guided fractionation and determined as gliotoxin. The results indicated that endophytic Trichoderma virens BLR24 isolated from the medical plant A. japonica roots could be a promising source of natural anti-MRSA agents. Endophytic fungal secondary metabolites are abundant in biologically active compounds. Endophytic fungi from medicinal plants could be a source yielding bioactive metabolites of pharmaceutical importance.
Assuntos
Ampelopsis , Staphylococcus aureus Resistente à Meticilina , Plantas Medicinais , Trichoderma , Cromatografia Líquida , Espectrometria de Massas em Tandem , EndófitosRESUMO
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
RESUMO
Thousands of biomedical scientific articles, including those describing genes associated with human diseases, are published every week. Computational methods such as text mining and machine learning algorithms are now able to automatically detect these associations. In this study, we used a cognitive computing text-mining application to construct a knowledge network comprising 3,723 genes and 99 diseases. We then tracked the yearly changes on these networks to analyze how our knowledge has evolved in the past 30 years. Our systems approach helped to unravel the molecular bases of diseases and detect shared mechanisms between clinically distinct diseases. It also revealed that multi-purpose therapeutic drugs target genes that are commonly associated with several psychiatric, inflammatory, or infectious disorders. By navigating this knowledge tsunami, we were able to extract relevant biological information and insights about human diseases.
RESUMO
INTRODUCTION: Species of Connaraceae are globally used in traditional medicines. However, several of these have not been studied regarding their chemical composition, and some are even at risk of extinction without proper studies. Therefore, the chemical composition and pharmacological potential of Connarus blanchetii Planch., Connarus nodosus Baker, Connarus regnellii G. Schellenb., and Connarus suberosus Planch., which were previously unknown, were analyzed. OBJECTIVE: This work aims to investigate the pharmacological potential of these four Connarus species. The chemical composition of different extracts was determined by high-resolution mass spectrometry (HRMS), with subsequent analysis by the GNPS platform and competitive fragmentation modeling (CFM). MATERIALS AND METHODS: Leaf extracts (C. blanchetii, C. nodosus, C. regnellii, and C. suberosus) and bark extracts (C. regnellii and C. suberosus) were obtained by decoction, infusion, and maceration. LC/HRMS data were submitted to the GNPS platform and evaluated using CFM in order to confirm the structures. RESULTS: The HRMS-GNPS/CFM analysis indicated the presence of 23 compounds that were mainly identified as phenolic derivatives from quercetin and myricetin, of which 21 are unedited in the Connarus genus. Thus, from the analyses performed, we can identify different compounds with pharmacological potential, as well as the most suitable forms of extraction. CONCLUSION: Using HRMS-GNPS/CFM, 21 unpublished compounds were identified in the studied species. Therefore, our combination of data analysis techniques can be used to determine their chemical composition.
Assuntos
Connaraceae , Cromatografia Líquida de Alta Pressão/métodos , Connaraceae/química , Medicina Tradicional , Fenóis/análise , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em TandemRESUMO
Abstract In Brazil, research with natural products had a strong impulse when FAPESP supported the creation of the Laboratory of Chemistry of Natural Products of the Institute of Chemistry of USP (1966). In 1999, FAPESP launched the Research Program in the Characterization, Conservation, Restoration and Sustainable Use of Biodiversity (BIOTA-FAPESP), which intensified the sustainable exploitation of biodiversity, and which evolved to form the Biota Network for Bioprospection and Bioassays (BIOprospecTA), which integrates groups from all over the country, optimizing the use of the skills already installed for the bioprospecting of microorganisms, plants, invertebrates, vertebrates and marine organisms. Of the 104 projects related to plant sciences, 35 carried out bioprospection of Brazilian flora, belonging to the areas of Chemistry, Botany, Genetics, Plant Physiology, Plant Morphology, Plant (Chemo)taxonomy, Ecosystem Ecology, Plant Genetics. Physical Sciences, Forest Resources, Forestry Engineering, Agronomy, leading to thousands of publications, engagement of hundreds of students and a deeper understanding of natural products in different biological models through macromolecules analysis aided by computational and spectrometric strategies, in addition to pharmacological evaluations. The development of omics approaches led to a more comprehensive view of the chemical profile of an organism, and enabled integrated and concomitant studies of several samples, and faster annotation of known molecules, through the use of hyphenated and chemometric techniques, and molecular networking. This also helped to overcome the lack of information on the safety and efficacy of herbal preparations, in projects dealing with the standardization of herbal products, according to international standards. The BIOTA-FAPESP program has also focused on environmental aspects, in accordance with the principles of Green Chemistry and has had positive effects on international collaboration, on the number and impact of scientific publications and on partnership with companies, a crucial step to add value and expand the production chain of bioproducts. Also, the compilation, systematization and sharing of data were contemplated with the creation of the NUBBEDB database, of free access, and that integrates with international databases (ACD/labs, American Chemical Society - ACS), helping researchers and companies in the development from different areas of science, technology, strengthening the bioeconomy and subsidizing public policies.
Resumo No Brasil, as pesquisas com produtos naturais tiveram um forte impulso quando a FAPESP apoiou a criação do Laboratório de Química de Produtos Naturais do Instituto de Química da USP (1966). Em 1999, a FAPESP lançou o Programa de Pesquisa em Caracterização, Conservação, Restauração e Uso Sustentável da Biodiversidade (BIOTA-FAPESP), que intensificou a exploração sustentável da biodiversidade, e que evoluiu para formar a Rede Biota de Bioprospecção e Bioensaios (BIOprospecTA), que integra grupos de todo o país, otimizando o aproveitamento das competências já instaladas para a bioprospecção de microrganismos, plantas, invertebrados, vertebrados e organismos marinhos. Dos 104 projetos relacionados às ciências vegetais, 35 realizaram a bioprospecção da flora brasileira, em diversas áreas como Química, Botânica, Fisiologia e Morfologia Vegetal, (Quimio)taxonomia Vegetal, Ecologia de Ecossistemas, Genética Vegetal, Recursos Florestais, Engenharia Florestal, dentre outros, levando a milhares de publicações, ao engajamento de centenas de estudantes e ao entendimento mais profundo dos produtos naturais em diferentes modelos biológicos por meio da análise de micromoléculas auxiliada por estratégias computacionais e espectrométricas, além de avaliações farmacológicas. O desenvolvimento de abordagens ômicas ampliou a visão sobre perfil químico dos organismos, possibilitou o estudo integrado e concomitante de várias amostras, e a anotação mais rápida de moléculas conhecidas, por meio do uso de técnicas hifenadas, quimiométricas e redes moleculares. Isso também contribuiu para superar a falta de informação sobre a segurança e eficácia dos fitopreparados, em projetos que tratam da padronização de produtos fitoterápicos, de acordo com normas internacionais. O programa BIOTA-FAPESP também tem focado em aspectos ambientais, de acordo com os princípios da Química Verde e teve reflexos positivos na colaboração internacional, no número e no impacto das publicações científicas e na parceria com empresas, etapa crucial para agregar valor e expandir a cadeia produtiva de bioprodutos. Ainda, a compilação, sistematização e compartilhamento de dados foram contemplados com a criação da base de dados NUBBEDB, de livre acesso, e que se integra com bases internacionais (ACD/labs, American Chemical Society - ACS), auxiliando pesquisadores e empresas no desenvolvimento de diferentes áreas da ciência, tecnologia, fortalecendo a bioeconomia e subsidiando políticas públicas.
RESUMO
Stryphnodendron pulcherrimum is a species known to have a high content of tannins. Accordingly, its preparations are used in southern Pará, Brazil, for their anti-inflammatory and antimicrobial activities, but so far, its chemical profile composition remains essentially unknown. We herein describe the compounds present in a hydro-acetonic extract from S. pulcherrimum leaves as revealed by dereplication via ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. The data were combined with spectral organization, spectral matching through the Global Natural Products Social platform, in silico annotation and taxonomical ponderation. Several types of phenolic compounds were identified such as gallic acids, flavan-3-ols and flavone-like compounds. From these, 5 have been recently reported by our group, whereas 44 are reported here for the first time in this tree species, and 41 (out of 49) for this genus. The results highlight the possible role of Stryphnodendron pulcherrimum as a renewable source for natural bioactive products with potential pharmaceutical applications.
RESUMO
The proteomic analysis of hairs, yarns or textiles has emerged as a powerful method to determine species of origin, mainly used in archaeozoological research and fraud control. Differentiation between the South American camelid (SAC) species (the wild guanaco and vicuña and their respective domesticates the llama and alpaca) is particularly challenging due to poor database information and significant hybridization between species. In this study, we analysed 41 modern and 4 archaeological samples from the four SACs species. Despite strong similarities with Old World Camelidae, we identified 7 peptides specific to SACs assigned to keratin K86 and the keratin-associated proteins KAP13-1 and KAP11-1. Untargeted multivariate analysis of the LC-MS data permitted to distinguish SAC species and propose discriminant features. MS/MS-based molecular networking combined with database-assisted de novo sequencing permitted to identify 5 new taxonomic peptides assigned to K33a, K81 and/or K83 keratins and KAP19-1. These peptides differentiate the two wild species, guanaco and vicuña. These results show the value of combining database search and untargeted metabolomic approaches for paleoproteomics, and reveal for the first time the potential of molecular networks to highlight deamidation related to diagenesis and cluster highly similar peptides related to interchain homologies or intra- or inter-specific polymorphism. SIGNIFICANCE: This study used an innovative approach combining multivariate analysis of LC-MS data together with molecular networking and database-assisted de novo sequencing to identify taxonomic peptides in palaeoproteomics. It constitutes the first attempt to differentiate between hair fibres from the four South American camelids (SACs) based on proteomic analysis of modern and archaeological samples. It provides different proteomic signatures for each of the four SAC species and proposes new SAC taxonomic peptides of interest in archaeozoology and fraud control. SACs have been extensively exploited since human colonization of South America but have not been studied to the extent of their economic, cultural and heritage importance. Applied to the analysis of ancient Andean textiles, our results should permit a better understanding of cultural and pastoral practices in South America. The wild SACs are endangered by poaching and black-market sale of their fibre. For the first time, our results provide discriminant features for the determination of species of origin of contraband fibre.
Assuntos
Camelídeos Americanos , Cabelo , Proteômica , Animais , Análise Multivariada , América do Sul , Espectrometria de Massas em TandemRESUMO
The platelet-derived growth factor receptor beta (PDGFRB) gene is involved in proliferative and developmental processes in mammals. Variations in this gene lead to several different syndromic conditions, such as infantile myofibromatosis I, sporadic port-wine stain, primary familial brain calcification, and the Penttinen and overgrowth syndromes. Our objective was to investigate PDGFRB's genetic relationship to clinical conditions and evaluate the protein interactions using GeneNetwork, GeneMANIA, and STRING network databases. We have evidenced the gene's pleiotropy through its many connections and its link to syndromic conditions. Therefore, PDGFRB may be an important therapeutic target for treating such conditions.
Assuntos
Pleiotropia Genética , Predisposição Genética para Doença , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Acro-Osteólise/genética , Sítios de Ligação , Calcinose/genética , Transtornos do Crescimento/genética , Humanos , Deformidades Congênitas dos Membros/genética , Miofibromatose/congênito , Miofibromatose/genética , Mancha Vinho do Porto/genética , Progéria/genética , Mapas de Interação de Proteínas , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
While tetrodotoxin (TTX) is commonly found in pufferfish tissues, it is unclear if bacterial symbionts isolated from pufferfish tissues can produce TTX. In this investigation, UPLC qTOF-MS/MS analysis of tissue extracts obtained from Sphoeroides spengleri and Canthigaster figuereidoi identified TTX in their composition, indicating their consumption is unsafe. UPLC qTOF-MS/MS analysis coupled with Molecular Networking indicated new TTX analogs (methyl-TTX, TTX-acetate, hydroxypropyl-TTX and glycerol-TTX). Bacterial extracts from sixteen strains revealed a compound with a [M+H]+ ion at m/z 320.1088, identical to TTX. However, TTX itself was not detected in these cultures by UPLC-MS/MS. Neurotoxicity of Vibrio A665 purified fraction 2 (with precursor [M+H]+ ion at m/z 320.1088) was significant in human neural stem cells (hNSCs), but the Nav blockage activity was not confirmed by the veratridine/ouabain essays, indicating a possible difference in the mechanism of action between the bacterium A665 purified fraction 2 and TTX. Vibrios symbionts of pufferfish point out involving in the production of TTX precursors.
Assuntos
Microbiota , Tetraodontiformes/fisiologia , Tetrodotoxina/metabolismo , Animais , Brasil , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem , Tetraodontiformes/microbiologia , VibrioRESUMO
Rocas Atoll is a unique environment in the equatorial Atlantic Ocean, hosting a large number of endemic species, however, studies on the chemical diversity emerging from this biota are rather scarce. Therefore, the present work aims to assess the metabolomic diversity and pharmacological potential of the microbiota from Rocas Atoll. A total of 76 bacteria were isolated and cultured in liquid culture media to obtain crude extracts. About one third (34%) of these extracts were recognized as cytotoxic against human colon adenocarcinoma HCT-116 cell line. 16S rRNA gene sequencing analyses revealed that the bacteria producing cytotoxic extracts were mainly from the Actinobacteria phylum, including Streptomyces, Salinispora, Nocardiopsis, and Brevibacterium genera, and in a smaller proportion from Firmicutes phylum (Bacillus). The search in the spectral library in GNPS (Global Natural Products Social Molecular Networking) unveiled a high chemodiversity being produced by these bacteria, including rifamycins, antimycins, desferrioxamines, ferrioxamines, surfactins, surugamides, staurosporines, and saliniketals, along with several unidentified compounds. Using an original approach, molecular networking successfully highlighted groups of compounds responsible for the cytotoxicity of crude extracts. Application of DEREPLICATOR+ (GNPS) allowed the annotation of macrolide novonestimycin derivatives as the cytotoxic compounds existing in the extracts produced by Streptomyces BRB-298 and BRB-302. Overall, these results highlighted the pharmacological potential of bacteria from this singular atoll.
Assuntos
Actinobacteria/química , Actinobacteria/metabolismo , Produtos Biológicos/farmacologia , Actinobacteria/isolamento & purificação , Oceano Atlântico , Células HCT116 , Humanos , Estrutura Molecular , Filogenia , Streptomyces/metabolismoRESUMO
The cellular response to hypoxia is crucial to organismal survival, and hypoxia-inducible factors (HIF) are the key mediators of this response. HIF-signaling is central to many human diseases and mediates longevity in the nematode. Despite the rapidly increasing knowledge on RNA-binding proteins (RBPs), little is known about their contribution to hypoxia-induced cellular adaptation. We used RNA interactome capture (RIC) in wild-type Caenorhabditis elegans and vhl-1 loss-of-function mutants to fill this gap. This approach identifies more than 1,300 nematode RBPs, 270 of which can be considered novel RBPs. Interestingly, loss of vhl-1 modulates the RBPome. This difference is not primarily explained by protein abundance suggesting differential RNA-binding. Taken together, our study provides a global view on the nematode RBPome and proteome as well as their modulation by HIF-signaling. The resulting RBP atlas is also provided as an interactive online data mining tool (http://shiny.cecad.uni-koeln.de:3838/celegans_rbpome).
RESUMO
Plant enemies that attack chemically similar host species are thought to mediate competitive exclusion of chemically similar plants and select for chemical divergence among closely related species. This hypothesis predicts that plant defenses should diverge rapidly, minimizing phylogenetic signal. To evaluate this prediction, we quantified metabolomic similarity for 203 tree species that represent >89% of all individuals in large forest plots in Maryland and Panama. We constructed molecular networks based on mass spectrometry of all 203 species, quantified metabolomic similarity for all pairwise combinations of species, and used phylogenetically independent contrasts to evaluate how pairwise metabolomic similarity varies phylogenetically. Leaf metabolomes exhibited clear phylogenetic signal for the temperate plot, which is inconsistent with the prediction. In contrast, leaf metabolomes lacked phylogenetic signal for the tropical plot, with particularly low metabolomic similarity among congeners. In addition, community-wide variation in metabolomes was much greater for the tropical community, with single tropical genera supporting greater metabolomic variation than the entire temperate community. Our results are consistent with the hypothesis that stronger plant-enemy interactions lead to more rapid divergence and greater metabolomic variation in tropical than temperate plants. Additional community-level foliar metabolomes will be required from tropical and temperate forests to evaluate this hypothesis.
Assuntos
Metabolômica , Clima Tropical , Panamá , Filogenia , Plantas/classificaçãoRESUMO
Specialist herbivores and pathogens could induce negative conspecific density dependence among their hosts and thereby contribute to the diversity of plant communities. A small number of hyperdiverse genera comprise a large portion of tree diversity in tropical forests. These closely related congeners are likely to share natural enemies. Diverse defenses could still allow congeners to partition niche space defined by natural enemies, but interspecific differences in defenses would have to exceed intraspecific variation in defenses. We ask whether interspecific variation in secondary chemistry exceeds intraspecific variation for species from four hyperdiverse tropical tree genera. We used novel methods to quantify chemical structural similarity for all compounds present in methanol extracts of leaf tissue. We sought to maximize intraspecific variation by selecting conspecific leaves from different ontogenetic stages (expanding immature vs. fully hardened mature), different light environments (deep understory shade vs. large forest gaps), and different seasons (dry vs. wet). Chemical structural similarity differed with ontogeny, light environment, and season, but interspecific differences including those among congeneric species were much larger. Our results suggest that species differences in secondary chemistry are large relative to within-species variation, perhaps sufficiently large to permit niche segregation among congeneric tree species based on chemical defenses.
Assuntos
Florestas , Folhas de Planta/química , Árvores/química , Herbivoria , Estações do Ano , Clima TropicalRESUMO
The description of the complex molecular network responsible for cell behavior requires new tools to integrate large quantities of experimental data in the design of biological information systems. These tools could be used in the characterization of these networks and in the formulation of relevant biological hypotheses. The building of an ontology is a crucial step because it integrates in a coherent framework the concepts necessary to accomplish such a task. We present MONET (molecular network), an extensible ontology and an architecture designed to facilitate the integration of data originating from different public databases in a single- and well-documented relational database, that is compatible with MONET formal definition. We also present an example of an application that can easily be implemented using these tools.