Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765261

RESUMO

Leishmaniasis is a complex disease caused by infection with different Leishmania parasites. The number of medications used for its treatment is still limited and the discovery of new drugs is a valuable approach. In this context, here we describe the in vitro leishmanicidal activity and the in silico interaction between trypanothione reductase (TryR) and (-)-5-demethoxygrandisin B from the leaves of Virola surinamensis (Rol.) Warb. The compound (-)-5-demethoxygrandisin B was isolated from V. surinamensis leaves, a plant found in the Brazilian Amazon, and it was characterized as (7R,8S,7'R,8'S)-3,4,5,3',4'-pentamethoxy-7,7'-epoxylignan. In vitro antileishmanial activity was examined against Leishmania amazonensis, covering both promastigote and intracellular amastigote phases. Cytotoxicity and nitrite production were gauged using BALB/c peritoneal macrophages. Moreover, transmission electron microscopy was applied to probe ultrastructural alterations, and flow cytometry assessed the shifts in the mitochondrial membrane potential. In silico methods such as molecular docking and molecular dynamics assessed the interaction between the most stable configuration of (-)-5-demethoxygrandisin B and TryR from L. infantum (PDB ID 2JK6). As a result, the (-)-5-demethoxygrandisin B was active against promastigote (IC50 7.0 µM) and intracellular amastigote (IC50 26.04 µM) forms of L. amazonensis, with acceptable selectivity indexes. (-)-5-demethoxygrandisin B caused ultrastructural changes in promastigotes, including mitochondrial swelling, altered kDNA patterns, vacuoles, vesicular structures, autophagosomes, and enlarged flagellar pockets. It reduced the mitochondria membrane potential and formed bonds with important residues in the TryR enzyme. The molecular dynamics simulations showed stability and favorable interaction with TryR. The compound targets L. amazonensis mitochondria via TryR enzyme inhibition.

2.
J Fungi (Basel) ; 9(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504706

RESUMO

In recent years, Candida auris has emerged as a hazardous hospital-acquired pathogen. Its resistance to antifungal treatments makes it challenging, requiring new approaches to manage it effectively. Herein, we aimed to assess the impact of photodynamic inactivation mediated by methylene blue (MB-PDI) or 1,9-dimethyl MB (DMMB-PDI) combined with a red LED against C. auris. To evaluate the photoinactivation of yeasts, we quantified colony-forming units and monitored ROS production. To gain some insights into the differences between MB and DMMB, we assessed lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm). After, we verified the effectiveness of DMMB against biofilms by measuring metabolic activity and biomass, and the structures were analyzed through scanning electron microscopy and optical coherence tomography. We also evaluated the cytotoxicity in mammalian cells. DMMB-PDI successfully eradicated C. auris yeasts at 3 µM regardless of the light dose. In contrast, MB (100 µM) killed cells only when exposed to the highest dose of light. DMMB-PDI promoted higher ROS, LPO and ΔΨm levels than those of MB. Furthermore, DMMB-PDI was able to inhibit biofilm formation and destroy mature biofilms, with no observed toxicity in fibroblasts. We conclude that DMMB-PDI holds great potential to combat the global threat posed by C. auris.

3.
Front Cell Infect Microbiol ; 12: 974910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093206

RESUMO

Leishmaniasis represents a serious world health problem, with 1 billion people being exposed to infection and a broad spectrum of clinical manifestations with a potentially fatal outcome. Based on the limitations observed in the treatment of leishmaniasis, such as high cost, significant adverse effects, and the potential for drug resistance, the aim of the present study was to evaluate the leishmanicidal activity of the compounds pseurotin A and monomethylsulochrin isolated from the biomass extract of Aspergillus sp. The chromatographic profiles of the extract were determined by high-performance liquid chromatography coupled with a diode-array UV-Vis detector (HPLC-DAD-UV), and the molecular identification of the pseurotin A and monomethylsulochrin were carried out by electrospray ionization mass spectrometry in tandem (LC-ESI-MS-MS) and nuclear magnetic resonance (NMR). Antileishmanial activity was assayed against promastigote and intracellular amastigote of Leishmania amazonensis. As a control, cytotoxicity assays were performed in non-infected BALB/c peritoneal macrophages. Ultrastructural alterations in parasites were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential were determined by flow cytometry. Only monomethylsulochrin inhibited the promastigote growth (IC50 18.04 ± 1.11 µM), with cytotoxicity to peritoneal macrophages (CC50 5.09 91.63 ± 1.28 µM). Activity against intracellular amastigote forms (IC50 5.09 ± 1.06 µM) revealed an increase in antileishmanial activity when compared with promastigotes. In addition to a statistically significant reduction in the evaluated infection parameters, monomethylsulochrin altered the ultrastructure of the promastigote forms with atypical vacuoles, electron-dense corpuscles in the cytoplasm, changes at the mitochondria outer membrane and abnormal disposition around the kinetoplast. It was showed that monomethylsulochrin leads to a decrease in the mitochondrial membrane potential (25.9%, p = 0.0286). Molecular modeling studies revealed that monomethylsulochrin can act as inhibitor of sterol 14-alpha-demethylase (CYP51), a therapeutic target for human trypanosomiasis and leishmaniasis. Assessed for its drug likeness, monomethylsulochrin follows the Lipinski Rule of five and Ghose, Veber, Egan, and Muegge criteria. Furthermore, monomethylsulochrin can be used as a reference in the development of novel and therapeutically useful antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmania , Leishmaniose , Animais , Antiprotozoários/química , Aspergillus , Biomassa , Humanos , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
4.
Cell Transplant ; 31: 9636897221085883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35343271

RESUMO

Acute kidney injury due to ischemia followed by reperfusion (IR) is a severe clinical condition with high death rates. IR affects the proximal tubule segments due to their predominantly oxidative metabolism and profoundly altered mitochondrial functions. We previously described the impact of IR on oxygen consumption, the generation of membrane potential (ΔΨ), and formation of reactive oxygen species, together with inflammatory and structural alterations. We also demonstrated the benefits of bone marrow mononuclear cells (BMMC) administration in these alterations. The objective of the present study has been to investigate the effect of IR and the influence of BMMC on the mechanisms of Ca2+ handling in mitochondria of the proximal tubule cells. IR inhibited the rapid accumulation of Ca2+ (Ca2+ green fluorescence assays) and induced the opening of the cyclosporine A-sensitive permeability transition pore (PTP), alterations prevented by BMMC. IR accelerated Ca2+-induced decrease of ΔΨ (Safranin O fluorescence assays), as evidenced by decreased requirement for Ca2+ load and t1/2 for complete depolarization. Addition of BMMC and ADP recovered the normal depolarization profile, suggesting that stabilization of the adenine nucleotide translocase (ANT) in a conformation that inhibits PTP opening offers a partial defense mechanism against IR injury. Moreover, as ANT forms a complex with the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane, it is possible that this complex is also a target for IR injury-thus favoring Ca2+ release, as well as the supramolecular structure that BMMC protects. These beneficial effects are accompanied by a stimulus of the citric acid cycle-which feed the mitochondrial complexes with the electrons removed from different substrates-as the result of accentuated stimulus of citrate synthase activity by BMMC.


Assuntos
Medula Óssea , Membranas Mitocondriais , Medula Óssea/metabolismo , Cálcio/metabolismo , Humanos , Isquemia/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Permeabilidade , Reperfusão
5.
J Leukoc Biol ; 112(1): 23-29, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35355308

RESUMO

The mitochondrial membrane potential (ΔΨm ) is a parameter often used to determine mitochondrial function; therefore, it can be used to determine the integrity and functionality of cells. A decrement of ΔΨm is implicated in several inflammatory-related pathologies, such phenomena can be related to COVID-19 infection. The present work aimed to compare the ΔΨm in leucocytes (human PBMCs; HPBMC) isolated from healthy control (HC) subjects, patients with COVID-19 (C-19), recovered subjects at 40 ± 13 (R1) and 335 ± 20 (R2) days after infection (dai). Obtained data showed that ΔΨm decreased in HPBMC of subjects with C-19, R1, and R2 compared with HC. When analyzing the ΔΨm data by sex, in females, a significant decrease was observed in R1 and R2 groups versus HC. Regarding men, a significant decrease of ΔΨm was observed in R1, with respect to HC, contrary to R2 group, who reestablished this parameter. Obtained results suggest that the loss of ΔΨm could be related to the long-COVID.


Assuntos
COVID-19 , COVID-19/complicações , Feminino , Humanos , Leucócitos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Síndrome de COVID-19 Pós-Aguda
6.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328335

RESUMO

Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase-3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Flavonas , Glucosídeos , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Tretinoína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Mar Drugs ; 20(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200630

RESUMO

Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.


Assuntos
COVID-19 , Leucócitos Mononucleares/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos/farmacologia , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Phaeophyceae/química , Polissacarídeos/química , Adulto Jovem
8.
Data Brief ; 40: 107739, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005137

RESUMO

Determination of oxygen consumption is one of the most valuable methodologies to evaluate mitochondrial (dys)function. Previous studies demonstrated that a widely used protocol, consisting of adding the ATP synthase inhibitor oligomycin before mitochondrial respiratory uncoupling by sequential addition of a protonophore (e.g., carbonyl cyanide 3-chlorophenyl hydrazone [CCCP]), may lead to underestimation of maximal oxygen consumption rate (OCRmax) and spare respiratory capacity (SRC) parameters in highly glycolytic tumor cell lines. In this dataset, we report the effects of the glycolytic inhibitors 2-deoxy-D-glucose, iodoacetic acid, and lonidamine on overcoming the underestimation of OCRmax and SRC in oligomycin-treated cells. We propose a protocol in which 2-deoxy-D-glucose is added after oligomycin and just before the sequential addition of CCCP to avoid underestimation of OCRmax and SRC parameters in A549, C2C12, and T98G cells. The oxygen consumption rates were determined in intact suspended cell lines using a high-resolution oxygraph device. The data can be used in several fields of research that require characterization of mitochondrial respiratory parameters in intact cells.

9.
Environ Sci Pollut Res Int ; 29(12): 17189-17208, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34664164

RESUMO

Argemone mexicana(Pepaveraceae) is an important medicinal plant commonly known as 'maxican prickly poppy' and is traditionally used to treat skin diseases. In the present study, the extract/fractions of aerial parts of A. mexicana after carrying out the organoleptic characteristics were sequentially extracted with the solvents of increasing polarities. Total fractions were examined for their radical scavenging activities in DPPH and DNA nicking assays. Among all, maximum antioxidant activity was shown by chloroform fraction (AmC) in DPPH assay with IC50 of 26.12 µg/ml, and DNA nicking assay showed 80.91% protective potential. The AmC fraction was analyzed for its antibacterial, cytotoxic potential, cell cycle analysis, mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) using A431 cell line. The AmC fraction exhibited remarkable antibacterial activity against bacterial strains in the order Klebsiella pneumoniae> Bacillussubtilis> Salmonella typhi> Staphylococcus epidermidis. The cytotoxic potential of the AmC fraction was analyzed in skin epidermoid carcinoma (A431) cells, osteosarcoma (MG-63) and cervical (HeLa) cell lines with a GI50 value of 47.04 µg/ml, 91.46 µg/ml and 102.90 µg/ml, respectively. The AmC fraction was extended further to explore its role in cell death using A431 cell line. Phase contrast and scanning electron microscopic studies on A431 cells exhibited all the characteristics indicative of apoptosis, viz., viability loss, cell shrinkage, cell rounding-off, DNA fragmentation and formation of apoptotic bodies. Flow cytometric analysis revealed enhanced ROS level, decreased MMP and arrest cell cycle at the G0/G1 phase further strengthened cell death by apoptosis. Increased expressions of apoptotic markers (p53, PUMA, cyt c, Fas and Apaf-1) were confirmed by RT-qPCR analysis. Furthermore, the AmC fraction was subjected to ultra-high-performance liquid chromatography, which revealed the presence of different polyphenols in the order: caffeic acid> epicatechin> kaempferol> chlorogenic acid> gallic acid> catechin> ellagic acid >umbeliferone> quercetin> coumaric acid. A critical analysis of results revealed that the AmC fraction induced cell death in epidermoid carcinoma cells via ROS and p53-mediated apoptotic pathway which may be ascribed to the presence of polyphenols in it.


Assuntos
Apoptose , Argemone , Extratos Vegetais , Argemone/química , Linhagem Celular Tumoral , Clorofórmio , Humanos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209483

RESUMO

Non-centrifugal cane sugar (NCS) is a traditional sweetener in most sugarcane regions of the world. In Colombia, this product has a socio-economic importance due to the extensive cultivation area and the high consumption rate per capita. NCS traditional processing involves consecutive stages of thermal processing that begin with juice extraction, clarification, evaporation, and finish with syrup crystallization into a solid commercial product, identified as NCS. Sugarcane is known to have a natural content of polyphenols, amino acids, vitamins, minerals, and complex sugars, some of which are reported as antioxidant and antiproliferative agents thought to be responsible for the product's bioactive profile. There is evidence to suggest that traditional thermal processing to obtain NCS leads to a considerable decrease in the contents of these bioactive compounds, mainly due to uncontrolled process variables such as temperature. Accordingly, the aim of this study was to assess and compare the bioactivity of sugarcane (SC) derivatives produced under controlled thermal conditions versus the traditional method. To achieve this goal, we evaluated the cytotoxic, antioxidant, and neuroprotective effects of varying concentrations of SC derivatives in an in vitro induced Parkinson's model. Results demonstrate non-cytotoxic activity on the cellular model by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and LDH assays, even at the highest tested concentration of 8 mg/mL, for all SC derivatives. The effect of SC derivatives on the induced oxidative stress model showed a biological reversion and recovering effect of the mitochondrial membrane potential and a halting of the progress into the early apoptosis phase. In conclusion, we demonstrated that the bioactive compounds present in SC derivatives obtained by a process under controlled temperature conditions are largely preserved, and even their biological activities are enhanced compared with SC derivatives obtained by the traditional thermal evaporation of SC-juice.

11.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918172

RESUMO

Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
12.
Microorganisms ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557150

RESUMO

Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. METHODS: We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. RESULTS: From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. CONCLUSION: Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.

13.
Toxicol In Vitro ; 70: 105011, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33038467

RESUMO

Perfluorohexane sulfonate (PFHxS) is one of the most abundant perfluorinated compounds in the environment. Exposure to this compound has been correlated to a decrease in human fertility, although the molecular and cellular mechanisms underlying this correlation have not been described. The adverse reproductive effects of PFHxS could be based on alterations in oocyte maturation, the process rendering oocytes competent for fertilization. The aim of this study was to evaluate the effect of PFHxS on porcine oocyte viability and maturation in vitro, as well as on gap-junctional intercellular communication (GJIC) in cumulus-oocyte complexes (COCs), oocyte mitochondrial membrane potential (mΔΨ) and DNA damage in cumulus cells, as possible mechanisms of action. PFHxS caused cytotoxicity (medium lethal concentration, LC50 = 329.1 µM) and inhibition of oocyte maturation (medium inhibitory concentration, MIC50 = 91.68 µM). GJIC was not affected in exposed COCs. However, the mitochondrial membrane potential was significantly decreased in PFHxS-exposed oocytes at the germinal vesicle breakdown (GVBD) stage. In addition, exposure to PFHxS induced DNA damage in cumulus cells. Thus, inhibition of oocyte maturation by PFHxS could be attributed to a decreased oocyte mΔΨ at the GVBD and to DNA damage of the cumulus cells that support the oocyte.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Ácidos Sulfônicos/toxicidade , Animais , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/fisiologia , Dano ao DNA , Feminino , Fluorocarbonos , Junções Comunicantes/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Suínos
14.
Andrologia ; 53(2): e13907, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33263218

RESUMO

In many cell types, the potential of reactive oxygen species to induce death processes has been largely demonstrated. Studies in spermatozoa have associated the imbalance of reactive oxygen species and phosphatidylserine externalisation as an apoptosis marker. However, the lack of consensus about time effect in the joint expression of these and other death markers has made it difficult to understand the set of mechanisms influenced beyond the concentration effect of reactive oxygen species to stimulate cell death. Here, the plasma membrane permeability and integrity, phosphatidylserine externalisation and mitochondrial membrane potential were jointly evaluated as death markers in human spermatozoa stimulated with H2 O2 . The results showed a profound and sustained effect of dissipation in the mitochondrial membrane potential and an increased phosphatidylserine externalisation in human spermatozoa exposed to 3 mmol-1 of H2 O2 at 30 min. This was followed by an increased membrane permeability after 45 min. The last observed event was the loss of cell membrane integrity at 60 min. In conclusion, mitochondria are rapidly affected in human spermatozoa exposed to reactive oxygen species, with the barely detectable mitochondrial membrane potential coexisting with the high phosphatidylserine externalisation in cells with normal membrane permeability.


Assuntos
Mitocôndrias , Espermatozoides , Morte Celular , Membrana Celular/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Fish Shellfish Immunol ; 107(Pt A): 95-103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32966893

RESUMO

Gastropod hematopoiesis occurs at specialized tissues in some species, but the evidence also suggests that hemocyte generation is maybe widespread in the connective tissues or the blood system in others. In Ampullariidae (Caenogastropoda), both the kidney and the lung contain putative hematopoietic cells, which react to immune challenges. In the current study, we wanted to explore if hematopoiesis occurs in the blood of Pomacea canaliculata. Thus, we obtained circulating hemocytes from donor animals and tested their ability to proliferate in the blood of conspecific recipients. We tracked cell proliferation by labeling the donors' hemocytes with the fluorescent cell proliferation marker carboxyfluorescein diacetate succinimidyl ester (CFSE). Transferred CFSE-labeled hemocytes survived and proliferated into the recipients' circulation for at least 17 days. We also determined the cell cycle status of circulating hemocytes by using the propidium iodide (PI) and acridine orange (AO) staining methods. Flow cytometry analyses showed that most PI-stained hemocytes were in the G1 phase (~96%), while a lower proportion of cells were through the G2/S-M transition (~4%). When we instead used AO-staining, we further distinguished a subpopulation of cells (~5%) of low size, complexity-granularity, and RNA content. We regarded this subpopulation as quiescent cells. In separate experimental sets, we complemented these findings by assessing in circulating hemocytes two evolutionary conserved features of quiescent, undifferentiated cells. First, we used JC-1 staining to determine the mitochondrial membrane potential (Ψm) of circulating hemocytes, which is expected to be low in quiescent cells. Most hemocytes (~87%) showed high aggregation of JC-1, which indicates a high Ψm. Besides that, a small hemocyte subpopulation (~11%) showed low aggregation of the dye, thus indicating a low Ψm. It is known that the transition from a quiescent to a proliferating state associates with an increase of the Ψm. The specificity of these changes was here controlled by membrane depolarization with the Ψm disruptor CCCP. Second, we stained hemocytes with Hoechst33342 dye to determine the efflux activity of ABC transporters, which participate in the multixenobiotic resistance system characteristic of undifferentiated cells. Most hemocytes (>99%) showed a low dye-efflux activity, but a small proportion of cells (0.06-0.12%) showed a high dye-efflux activity, which was significantly inhibited by 100 and 500 µM verapamil, and thus is indicative of an undifferentiated subpopulation of circulating hemocytes. Taken together, our results suggest that, among circulating hemocytes, there are cells with the ability to proliferate or to stay in a quiescent state and behave as progenitor cells later, either in the circulation or the hematopoietic tissues/organs.


Assuntos
Hematopoese/imunologia , Hemócitos/imunologia , Caramujos/imunologia , Animais , Contagem de Células , Citometria de Fluxo , Espécies Introduzidas
16.
Bioorg Chem ; 102: 104068, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653609

RESUMO

The n-hexane extract from leaves of Schinus terebinthifolius (Anacardiaceae) induced 100% of death of trypomastigote forms of T. cruzi at 300 µg/mL and was subjected to a bioactivity-guided fractionation to afford a C17:2 derivative of anacardic acid [6-(8'Z,11'Z)-heptadecadienyl-salicylic acid, 1]. Additionally, compound 1 was subjected to hydrogenation procedures to afford a C17:0 derivative (6-heptadecanyl-salicylic acid, 1a). Compounds 1 and 1a were effective in killing trypomastigote forms of T. cruzi with IC50 values of 8.3 and 9.0 µM, respectively, while a related compound, salicylic acid, was inactive. Furthermore, no cytotoxicity was observed for the highest tested concentration (CC50 > 200 µM) for all evaluated compounds. Due to the promising results, the mechanism of parasite death was investigated for compounds 1 and 1a using flow cytometry and spectrofluorimetry. The cell membrane permeability assay with SYTOX Green indicated that compound 1 significantly altered this parameter after 40 min of incubation, while compound 1a caused no alteration. Considering that the hydrogenation rendered a differential cellular target in parasites, additional assays were performed with 1a. Despite no permeabilization of the plasma membrane, compound 1a induced depolarization of the electric potential after two hours of incubation. The mitochondria of the parasite were also affected by compound 1a, with depolarization of the mitochondrial membrane potential, and reduction of reactive oxygen species (ROS) levels. The Ca2+ levels were not affected during the time of incubation. Considering that the mitochondrion is a single organelle in Trypanosoma cruzi for ATP generation, compounds affecting the bioenergetic system are of interest for drug discovery against Trypanosomatids.


Assuntos
Ácidos Anacárdicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Folhas de Planta/química , Trypanosoma cruzi/efeitos dos fármacos , Ácidos Anacárdicos/farmacologia , Animais , Feminino , Masculino , Camundongos
17.
MethodsX ; 7: 100938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551241

RESUMO

The understanding of how different cell types adapt their metabolism in the face of challenges has been attracting the attention of researchers for many years. Recently, immunologists also started to focus on how the metabolism of immune cells can impact the way that immunity drives its responses. The presence of a pathogen or damage in a tissue changes severely the way that the immune cells need to respond. When activated, immune cells usually shift their metabolism from a high energy demanding status using mitochondria respiration to a glycolytic based rapid ATP production. The diminished amount of respiration leads to changes in the mitochondrial membrane potential and, consequently, generation of reactive oxygen species. Here, we show how flow cytometry can be used to track changes in mitochondrial mass, membrane potential and superoxide (ROS) production in live immune cells. ● This protocol suggests a quick way of evaluating mitochondrial fitness using flow cytometry. We propose using the probes MitoTraker Green and MitoTracker Red/ MitoSOX at the same time. This way, it is possible to evaluate different parameters of mitochondrial biology in living cells. ● Flow cytometry is a highly used tool by immunologists. With the advances of studies focusing on the metabolism of immune cells, a simplified application of flow cytometry for mitochondrial studies and screenings is a helpful clarifying method for immunology.

18.
Free Radic Biol Med ; 153: 54-70, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315768

RESUMO

The kidney proximal tubule function relies on oxidative phosphorylation (OXPHOS), thus mitochondrial dysfunction is characteristic of acute kidney injury (AKI). Maleic acid (MA) can induce an experimental model of Fanconi syndrome that is associated to oxidative stress and decreased oxygen consumption. Sulforaphane (SF) is an antioxidant known to protect against MA-induced AKI. The molecular basis by which SF maintains the bioenergetics in MA-induced AKI is not fully understood. To achieve it, rats were submitted to a protective scheme: SF (1 mg/kg/day i.p.) for four days and, at the fourth day, they received a single dose of MA (400 mg/kg i.p.), getting four main experimental groups: (1) control (CT), (2) MA-nephropathy (MA), (3) SF-protected and (4) SF-control (SF). Additionally, a similar protective schema was tested in cultured NRK-52E cells with different concentrations of SF and MA. In the animal model, SF prevented the MA-induced alterations: decrease in fatty acid-related oxygen consumption rate, OXPHOS capacity, mitochondrial membrane potential (Ψmt), and the activity of complex I (CI) as its monomeric and supercomplexes forms; the antioxidant also increased the activity of cytochrome c oxidase as well as mitochondrial biogenesis markers. Thus, SF prevented the MA-induced increase in fission, mitophagy and autophagy markers. In NRK-52E cells, we found that SF prevented the MA-induced cell death, increased mitochondrial mass and ameliorated the loss of Ψmt. We concluded that SF-induced biogenesis protects against mitochondrial dysfunction maintaining Ψmt, activities of mitochondrial complexes and supercomplexes, and prevents the extensive fission and mitophagy.


Assuntos
Síndrome de Fanconi , Mitofagia , Animais , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/tratamento farmacológico , Síndrome de Fanconi/genética , Ácidos Graxos , Isotiocianatos , Biogênese de Organelas , Ratos , Sulfóxidos
19.
Anticancer Agents Med Chem ; 20(10): 1188-1196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294048

RESUMO

BACKGROUND: Cucurbitacin IIb (CIIb) from Ibervillea sonorae has a high capacity to suppress cancer cell proliferation and induce apoptosis. This study investigated the molecular mechanisms related to the antiproliferative and apoptosis induction capacity of CIIb in HeLa cells. MATERIALS AND METHODS: The cell viability and anti-proliferative effect of CIIb were evaluated by using the trypan blue exclusion assay. The effect of CIIb on the mitochondrial membrane potential was determined by flow cytometry using JC-1. The activity of caspase-3 and caspase-9 was evaluated by flow cytometry using commercial kits. The effect of CIIb on the cell cycle was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. Western blot analysis was used to evaluate both the inhibitory effect of CIIb on the STAT3 signaling pathway and cyclin -B1, and DNA damage by the comet assay. RESULTS: CIIb triggers disruption of the mitochondrial membrane potential (Δψm) and consequently activated the caspases -3 and -9, as a result of the activation of the intrinsic pathway of the apoptosis. Likewise, the CIIbinduced cell cycle was arrested in S and G2/M after 24h of treatment. CIIb also reduced the expression of STAT3 and cyclin -B1. Finally, CIIb produced an antiproliferative effect at 48 and 72 h, inducing DNA damage. CONCLUSION: These results demonstrate CIIb-induced apoptosis and cell cycle arrest in HeLa through the inhibition of STAT3.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Cucurbitaceae/química , Cucurbitacinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cucurbitacinas/química , Cucurbitacinas/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
J Pharm Pharmacol ; 71(12): 1871-1878, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595517

RESUMO

OBJECTIVE: This work describes the isolation of anti-Leishmania amazonensis metabolites from Saururus cernuus (Saururaceae). Additionally, ultrastructural changes in promastigotes were evidenced by electron microscopy. METHODS: The MeOH extract from the leaves of S. cernuus was subjected to bioactivity-guided fractionation. Anti-L. amazonensis activity of purified compounds was performed in vitro against promastigote and amastigote forms. KEY FINDINGS: Bioactivity-guided fractionation of the MeOH extract from the leaves of S. cernuus afforded two related tetrahydrofuran dineolignans: threo,threo-manassantin A (1) and threo,erythro-manassantin A (2). Compounds 1 and 2 displayed activity against promastigotes (EC50 of 35.4 ± 7.7 and 17.6 ± 4.2 µm, respectively) and amastigotes (EC50 of 20.4 ± 1.9 and 16.0 ± 1.1 µm, respectively), superior to that determined for the positive control miltefosine (EC50 of 28.7 ± 3.5 µm). Reduced cytotoxicity for host cells was observed for both compounds. Additionally, ultrastructural changes in promastigotes leading to an alteration of structural morphology were observed, as evidenced by electron microscopy. Furthermore, these compounds altered the morphology and physiology of the plasmatic membrane of L. amazonensis. CONCLUSIONS: The obtained results indicated that dineolignans 1 and 2 could be considered as a scaffold for the design of novel and selective drug candidates for the treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Lignanas/farmacologia , Saururaceae/química , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Furanos/química , Furanos/isolamento & purificação , Furanos/farmacologia , Leishmaniose/parasitologia , Lignanas/química , Lignanas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA